Skip to main content

Advertisement

Log in

Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

AML1/ETO fusion gene is one of disease-causing genes of t(8;21)-positive acute myeloid leukemia (AML). Oroxylin A (OA) has showed anticancer effects on other cancer cells. Here, studies were conducted to determine the antileukemia effect of OA on t(8;21)-positive AML cells in vitro and in vivo.

Materials and methods

The effects of OA on cell viability of t(8;21)-positive Kasumi-1 and primary AML cells were analyzed by MTT assay. Cell differentiation was examined by NBT reduction assay, flow cytometry analysis for CD11b/CD14, and Giemsa stain. Protein expressions were determined by Western blots. Immunofluorescence assay was used to verify the effect of OA on HDAC-1 expression in vivo. Immunohistochemical staining was applied to evaluate leukemic infiltration of AML-bearing NOD/SCID mice.

Results

OA enhanced NBT reduction activity and CD11b/CD14 expression of AML1/ETO-positive AML cells markedly. Results of Giemsa staining also demonstrated that OA could induce the morphologic changes with reduction of nuclear/cytoplasmic ratios, suggesting the cell differentiation induced by OA. Further study showed that OA decreased the expression of fusion protein AML1/ETO and down-regulated HDAC-1 protein levels in vitro and in vivo. Moreover, OA increased the expression of differentiation-related proteins C/EBPα and P21. Acetylation levels of histones were also advanced obviously after treatment of OA. In vivo study indicated that OA could prolong the survival of AML-bearing NOD/SCID mice and reduce leukocytic infiltration of the spleen.

Conclusions

All these results suggested that OA might be a novel candidate agent for differentiation therapy for AML1/ETO-positive AML and the mechanism required further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Wahab O, Levine RL (2010) Recent advances in the treatment of acute myeloid leukemia. F1000 Med Rep 2:55

    PubMed  PubMed Central  Google Scholar 

  • Atadja PW (2011) HDAC inhibitors and cancer therapy. Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques 67:175–195

    CAS  PubMed  Google Scholar 

  • Bassett SA, Barnett MP (2014) The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 6:4273–4301

    Article  PubMed  PubMed Central  Google Scholar 

  • Bots M, Verbrugge I, Martin BP, Salmon JM, Ghisi M, Baker A, Stanley K, Shortt J, Ossenkoppele GJ, Zuber J, Rappaport AR, Atadja P, Lowe SW, Johnstone RW (2014) Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood 123:1341–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooqi AA, Tang JY, Li RN, Ismail M, Chang YT, Shu CW, Yuan SS, Liu JR, Mansoor Q, Huang CJ, Chang HW (2015) Epigenetic mechanisms in cancer: push and pull between kneaded erasers and fate writers. Int J Nanomed 10:3183–3191

    CAS  Google Scholar 

  • Fredly H, Gjertsen BT, Bruserud O (2013) Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenet 5:12

    Article  CAS  Google Scholar 

  • Gao Y, Lu N, Ling Y, Chen Y, Wang L, Zhao Q, Qi Q, Liu W, Zhang H, You Q, Guo Q (2010) Oroxylin A inhibits angiogenesis through blocking vascular endothelial growth factor-induced KDR/Flk-1 phosphorylation. J Cancer Res Clin Oncol 136:667–675

    Article  CAS  PubMed  Google Scholar 

  • Grant PA (2001) A tale of histone modifications. Genome Biol 2:0003

    Article  Google Scholar 

  • Guha M (2015) HDAC inhibitors still need a home run, despite recent approval. Nat Rev Drug Discov 14:225–226

    Article  CAS  PubMed  Google Scholar 

  • Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, Zhang P, Santana-Lemos BA, Neuberg D, Wagers AJ, Rego EM, Tenen DG (2009) Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 114:5415–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackanson B, Bennett KL, Brena RM, Jiang J, Claus R, Chen SS, Blagitko-Dorfs N, Maharry K, Whitman SP, Schmittgen TD, Lubbert M, Marcucci G, Bloomfield CD, Plass C (2008) Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res 68:3142–3151

    Article  CAS  PubMed  Google Scholar 

  • Hatlen MA, Wang L, Nimer SD (2012) AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 6:248–262

    Article  PubMed  Google Scholar 

  • Hui H, Chen Y, Yang H, Zhao K, Wang Q, Zhao L, Wang X, Li Z, Lu N, Guo Q (2014a) Oroxylin A has therapeutic potential in acute myelogenous leukemia by dual effects targeting PPARgamma and RXRalpha. Int J Cancer 134:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Hui H, Yang H, Dai Q, Wang Q, Yao J, Zhao K, Guo Q, Lu N (2014b) Oroxylin A inhibits ATRA-induced IL-6 expression involved in retinoic acid syndrome by down-regulating CHOP. Gene 551:230–235

    Article  CAS  PubMed  Google Scholar 

  • Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411–3420

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel T (2008) Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 22:1369–1379

    Article  PubMed  Google Scholar 

  • Kretsovali A, Hadjimichael C, Charmpilas N (2012) Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012:184154

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagace DC, Nachtigal MW (2004) Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J Biol Chem 279:18851–18860

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J, Handy DE (2014) Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm Circ 4:169–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Towatari M, Kosugi H, Saito H (2000) Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96:3847–3856

    CAS  PubMed  Google Scholar 

  • Mehdipour P, Santoro F, Minucci S (2015) Epigenetic alterations in acute myeloid leukemias. FEBS J 282:1786–1800

    Article  CAS  PubMed  Google Scholar 

  • Newbold A, Matthews GM, Bots M, Cluse LA, Clarke CJ, Banks KM, Cullinane C, Bolden JE, Christiansen AJ, Dickins RA, Miccolo C, Chiocca S, Kral AM, Ozerova ND, Miller TA, Methot JL, Richon VM, Secrist JP, Minucci S, Johnstone RW (2013) Molecular and biologic analysis of histone deacetylase inhibitors with diverse specificities. Mol Cancer Ther 12:2709–2721

    Article  CAS  PubMed  Google Scholar 

  • Nishii K, Usui E, Katayama N, Lorenzo FT, Nakase K, Kobayashi T, Miwa H, Mizutani M, Tanaka I, Nasu K, Dohy H, Kyo T, Taniwaki M, Ueda T, Kita K, Shiku H (2003) Characteristics of t(8;21) acute myeloid leukemia (AML) with additional chromosomal abnormality: concomitant trisomy 4 may constitute a distinctive subtype of t(8;21) AML. Leukemia 17:731–737

    Article  CAS  PubMed  Google Scholar 

  • Peterson LF, Zhang DE (2004) The 8;21 translocation in leukemogenesis. Oncogene 23:4255–4262

    Article  CAS  PubMed  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  CAS  PubMed  Google Scholar 

  • Tabe Y, Jin L, Contractor R, Gold D, Ruvolo P, Radke S, Xu Y, Tsutusmi-Ishii Y, Miyake K, Miyake N, Kondo S, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M (2007) Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1. Cell Death Differ 14:1443–1456

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Ubara Y, Suwabe T, Hoshino J, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Marui Y, Sawa N, Takemoto F, Takaichi K (2011) Successful treatment of acute promyelocytic leukemia in a patient on hemodialysis. Clin Exp Nephrol 15:434–437

    Article  CAS  PubMed  Google Scholar 

  • Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, Hiddemann W, Behre G (2003) The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101:270–277

    Article  CAS  PubMed  Google Scholar 

  • Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biol Targets Ther 7:47–60

    CAS  Google Scholar 

  • Volpe G, Walton DS, Del Pozzo W, Garcia P, Dasse E, O’Neill LP, Griffiths M, Frampton J, Dumon S (2013) C/EBPalpha and MYB regulate FLT3 expression in AML. Leukemia 27:1487–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakita S, Yamaguchi H, Miyake K, Mitamura Y, Kosaka F, Dan K, Inokuchi K (2011) Importance of c-kit mutation detection method sensitivity in prognostic analyses of t(8;21)(q22;q22) acute myeloid leukemia. Leukemia 25:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW (1998) The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 18:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  CAS  PubMed  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Melkoumian ZK, Lucktong A, Moniwa M, Davie JR, Strobl JS (2000) Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem 275:35256–35263

    Article  CAS  PubMed  Google Scholar 

  • Zhou GB, Kang H, Wang L, Gao L, Liu P, Xie J, Zhang FX, Weng XQ, Shen ZX, Chen J, Gu LJ, Yan M, Zhang DE, Chen SJ, Wang ZY, Chen Z (2007) Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 109:3441–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang S (2013) Regulation of STAT signaling by acetylation. Cell Signal 25:1924–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang WY, Cen JN, Zhao Y, Chen ZX (2013) Epigenetic silencing of Bcl-2, CEBPA and p14(ARF) by the AML1-ETO oncoprotein contributing to growth arrest and differentiation block in the U937 cell line. Oncol Rep 30:185–192

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (No. G140042), Science Fund for Distinguished Young Scholars of Jiangsu province (BK20130024), the National Science and Technology Major Project (No. 2012ZX09304-001, 2012ZX09103101-050), the National Natural Science Foundation of China (Nos. 81300379, 81373449, and 81503096), Natural Science Foundation of Jiangsu province (No. BK20140668), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT-IRT1193), and Huahai Graduate Innovation Fund (CX13B-006HH), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Fundamental Research Funds for the Central Universities (PY2014YX0001; ZL2014YX0034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyan Xu, Qinglong Guo or Na Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Hui Hui and Xiaoxiao Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, H., Zhang, X., Li, H. et al. Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells. J Cancer Res Clin Oncol 142, 1449–1459 (2016). https://doi.org/10.1007/s00432-016-2160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2160-1

Keywords

Navigation