Skip to main content

Advertisement

Log in

Schizophyllan inhibits the development of mammary and hepatic carcinomas induced by 7,12 dimethylbenz(α)anthracene and decreases cell proliferation: comparison with tamoxifen

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Breast cancer is one of the leading causes of cancer mortality among women. Some anticancer compounds have been isolated from mushrooms. The aim of the present work was to study the anticancer effects of schizophyllan (SCH), a β-d-glucan extracted from the mushroom Schizophyllum commune alone or in combination with tamoxifen (TAM) on 7, 12 Dimethylbenz(α)anthracene (DMBA)-induced carcinomas in mice.

Methods

We isolated SCH from S. commune. Female mice received DMBA, SCH, DMBA+SCH, DMBA+TAM or DMBA+TAM+SCH or vehicles. We studied mice survival, tumour incidence, histopathology, oestrogen receptor (ER) expression, cell proliferation by immunohistochemical detection of proliferating cell nuclear antigen (PCNA), apoptosis by TUNEL assay, as well as caspase-3 expression.

Results

DMBA treatment resulted in mammary and hepatocellular carcinomas (HCC). Both SCH and TAM reduced the incidence of DMBA-induced mammary tumours by 85 and 75 %, respectively, and equally decreased the PCNA labelling index relative to DMBA. TAM treatment increased the incidence of- and PCNA index in HCCs relative to DMBA, while SCH suppressed these effects. TAM was more effective than SCH in the induction of apoptosis in both mammary and hepatic carcinomas. Caspase-3 levels correlated with the apoptotic index in most experimental groups.

Conclusions

Only one dose of SCH had similar therapeutic effects against DMBA-induced mammary carcinomas as 4 weeks of TAM treatment. This coupled with the ability of SCH to suppress hepatic lesions associated with TAM treatment provides the rationale for further investigating the combined therapeutic effects of TAM+SCH in preclinical models of ER-positive breast cancer, as well as in liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMBA:

7,12 Dimethylbenz(α)anthracene

DCIS:

Ductal carcinoma in situ

ER:

Oestrogen receptor

H&E:

Haematoxylin and eosin

HCC:

Hepatocellular carcinoma

IDC:

Infiltrative ductal carcinoma

ILC:

Infiltrative lobular carcinoma

LI:

Labelling index

PCNA:

Proliferating cell nuclear antigen

SCH:

Schizophyllan

TAM:

Tamoxifen

References

  • Abraham RJ, Loftus P (1978) Proton and carbon-13 NMR spectroscopy: an integrated approach. Heyden, London

    Google Scholar 

  • Akhondi-Meybodi M, Mortazavy-Zadah MR, Hashemian Z, Moaiedi M (2011) Incidence and risk factors for non-alcoholic steatohepatitis in females treated with tamoxifen for breast cancer. Arab J Gastroenterol 12(1):34–36

    Article  PubMed  CAS  Google Scholar 

  • Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol Off J US Can Acad Pathol Inc 11(2):155–168

    CAS  Google Scholar 

  • Axelrod R, Axelrod DE, Pienta KJ (2006) Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 103(36):13474–13479

    Article  PubMed  CAS  Google Scholar 

  • Bernstein L, Deapen D, Cerhan JR, Schwartz SM, Liff J, McGann-Maloney E, Perlman JA, Ford L (1999) Tamoxifen therapy for breast cancer and endometrial cancer risk. J Natl Cancer Inst 91(19):1654–1662

    Article  PubMed  CAS  Google Scholar 

  • Bohn JA, BeMiller JN (1995) (1– >3)-beta-d-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28(1):3–14

    Article  CAS  Google Scholar 

  • Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221(4):281–293

    Article  PubMed  CAS  Google Scholar 

  • Borchers AT, Keen CL, Gershwin ME (2004) Mushrooms, tumors, and immunity: an update. Exp Biol Med (Maywood) 229(5):393–406

    CAS  Google Scholar 

  • Burchiel SW, Davis DA, Ray SD, Barton SL (1993) DMBA induces programmed cell death (apoptosis) in the A20.1 murine B cell lymphoma. Fundam Appl Toxicol Off J Soc Toxicol 21(1):120–124

    Article  CAS  Google Scholar 

  • Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature 222(5194):687–688

    Article  PubMed  CAS  Google Scholar 

  • Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res 30(11):2776–2781

    PubMed  CAS  Google Scholar 

  • de Sousa JA, Facina G, da Silva BB, Gebrim LH (2006) Effects of low-dose tamoxifen on breast cancer biomarkers Ki-67, estrogen and progesterone receptors. Int Semin Surg Oncol ISSO 3:29

    Article  Google Scholar 

  • Di Cosimo S, Baselga J (2008) Targeted therapies in breast cancer: where are we now? Eur J Cancer 44(18):2781–2790

    Article  PubMed  Google Scholar 

  • Dragan YP, Fahey S, Nuwaysir E, Sattler C, Babcock K, Vaughan J, McCague R, Jordan VC, Pitot HC (1996) The effect of tamoxifen and two of its non-isomerizable fixed-ring analogs on multistage rat hepatocarcinogenesis. Carcinogenesis 17(3):585–594

    Article  PubMed  CAS  Google Scholar 

  • Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388

    Article  PubMed  CAS  Google Scholar 

  • Frankfurt OS, Sugarbaker EV, Robb JA, Villa L (1995) Synergistic induction of apoptosis in breast cancer cells by tamoxifen and calmodulin inhibitors. Cancer Lett 97(2):149–154

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Latendresse JR, Muskhelishvili L, Blaydes BS, Delclos KB (2005) Dietary modulation of 7,12-dimethylbenz[a]anthracene (DMBA)-induced adrenal toxicity in female Sprague-Dawley rats. Food Chem Toxicol Int J Pub Br Ind Biol Res Assoc 43(5):765–774

    CAS  Google Scholar 

  • Fu H, Guo WY, Yin H, Wang ZX, Li RD (2011) Inhibition of Lentinus edodes polysaccharides against liver tumour growth. Int J Phys Sci 6(1):116–120

    CAS  Google Scholar 

  • Fujii T, Maeda H, Suzuki F, Ishida N (1978) Isolation and characterization of a new antitumor polysaccharide, KS-2, extracted from culture mycelia of Lentinus edodes. J Antibiot 31(11):1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto S, Furue H, Kimura T, Kondo T, Orita K, Taguchi T, Yoshida K, Ogawa N (1991) Clinical outcome of postoperative adjuvant immunochemotherapy with sizofiran for patients with resectable gastric cancer: a randomised controlled study. Eur J Cancer 27(9):1114–1118

    Article  PubMed  CAS  Google Scholar 

  • Garrity MM, Burgart LJ, Riehle DL, Hill EM, Sebo TJ, Witzig T (2003) Identifying and quantifying apoptosis: navigating technical pitfalls. Mod Pathol Off J U S Can Acad Pathol Inc 16(4):389–394

    Google Scholar 

  • Greaves P, Goonetilleke R, Nunn G, Topham J, Orton T (1993) Two-year carcinogenicity study of tamoxifen in Alderley Park Wistar-derived rats. Cancer Res 53(17):3919–3924

    PubMed  CAS  Google Scholar 

  • Hard GC, Williams GM, Iatropoulos MJ (1993) Tamoxifen and liver cancer. Lancet 342(8868):444–445

    Article  PubMed  CAS  Google Scholar 

  • Herold C, Ganslmayer M, Ocker M, Hermann M, Hahn EG, Schuppan D (2002) Combined in vitro anti-tumoral action of tamoxifen and retinoic acid derivatives in hepatoma cells. Int J Oncol 20(1):89–96

    PubMed  CAS  Google Scholar 

  • Inoue M, Tanaka Y, Sugita N, Yamasaki M, Yamanaka T, Minagawa J, Nakamuro K, Tani T, Okudaira Y, Karita T et al (1993) Improvement of long-term prognosis in patients with ovarian cancers by adjuvant sizofiran immunotherapy: a prospective randomized controlled study. Biotherapy 6(1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka Y, Tsukada H, Gejyo F (2004) Interference of (1– >3)-beta-d-glucan administration in the measurement of plasma (1– >3)-beta-d-glucan. Intern Med 43(2):97–101

    Article  PubMed  CAS  Google Scholar 

  • Jones LP, Li M, Halama ED, Ma Y, Lubet R, Grubbs CJ, Deng CX, Rosen EM, Furth PA (2005) Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene 24(22):3554–3562

    Article  PubMed  CAS  Google Scholar 

  • Killackey MA, Hakes TB, Pierce VK (1985) Endometrial adenocarcinoma in breast cancer patients receiving antiestrogens. Cancer Treat Rep 69(2):237–238

    PubMed  CAS  Google Scholar 

  • Kimura Y, Tojima H, Fukase S, Takeda K (1994) Clinical evaluation of sizofilan as assistant immunotherapy in treatment of head and neck cancer. Acta Otolaryngol Suppl 511:192–195

    Article  PubMed  CAS  Google Scholar 

  • Kodama N, Komuta K, Nanba H (2002) Can maitake MD-fraction aid cancer patients? Altern Med Rev 7(3):236–239

    PubMed  Google Scholar 

  • Kodama N, Komuta K, Nanba H (2003) Effect of Maitake (Grifola frondosa) D-Fraction on the activation of NK cells in cancer patients. J Med Food 6(4):371–377

    Article  PubMed  CAS  Google Scholar 

  • Komatsu N, Okubo S, Kikumoto S, Kimura K, Saito G (1969) Host-mediated antitumor action of schizophyllan, a glucan produced by Schizophyllum commune. Gann 60(2):137–144

    PubMed  CAS  Google Scholar 

  • Lee SH, Hwang HS, Yun JW (2009) Antitumor activity of water extract of a mushroom, Inonotus obliquus, against HT-29 human colon cancer cells. Phytother Res 23(12):1784–1789

    Article  PubMed  Google Scholar 

  • Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG (2006) Oral administration of a new soluble branched beta-1,3-d-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol 143(1):65–69

    Article  PubMed  CAS  Google Scholar 

  • Lindequist U, Niedermeyer TH, Julich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2(3):285–299

    Article  PubMed  Google Scholar 

  • Mandlekar S, Yu R, Tan TH, Kong AN (2000) Activation of caspase-3 and c-Jun NH2-terminal kinase-1 signaling pathways in tamoxifen-induced apoptosis of human breast cancer cells. Cancer Res 60(21):5995–6000

    PubMed  CAS  Google Scholar 

  • Martin KR, Brophy SK (2010) Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Exp Biol Med (Maywood) 235(11):1306–1314

    Article  CAS  Google Scholar 

  • Miyazaki K, Mizutani H, Katabuchi H, Fukuma K, Fujisaki S, Okamura H (1995) Activated (HLA-DR+) T-lymphocyte subsets in cervical carcinoma and effects of radiotherapy and immunotherapy with sizofiran on cell-mediated immunity and survival. Gynecol Oncol 56(3):412–420

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Oka K, Hanba K, Morita S (1996) Intratumoral administration of sizofiran activates Langerhans cell and T-cell infiltration in cervical cancer. Clin Immunol Immunopathol 79(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Nemoto Y, Saibara T, Ogawa Y, Zhang T, Xu N, Ono M, Akisawa N, Iwasaki S, Maeda T, Onishi S (2002) Tamoxifen-induced nonalcoholic steatohepatitis in breast cancer patients treated with adjuvant tamoxifen. Intern Med 41(5):345–350

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Takeuchi S, Yajima A, Akiya K, Kasamatsu T, Tomoda Y, Ozawa M, Sekiba K, Sugimori H, Hashimoto S et al (1992) Clinical effect of sizofiran combined with irradiation in cervical cancer patients: a randomized controlled study. Cooperative study group on SPG for gynecological cancer. Jpn J Clin Oncol 22(1):17–25

    PubMed  CAS  Google Scholar 

  • Obrero M, Yu DV, Shapiro DJ (2002) Estrogen receptor-dependent and estrogen receptor-independent pathways for tamoxifen and 4-hydroxytamoxifen-induced programmed cell death. J Biol Chem 277(47):45695–45703

    Article  PubMed  CAS  Google Scholar 

  • Okamura K, Suzuki M, Chihara T, Fujiwara A, Fukuda T, Goto S, Ichinohe K, Jimi S, Kasamatsu T, Kawai N et al (1989) Clinical evaluation of sizofiran combined with irradiation in patients with cervical cancer. A randomized controlled study; a five-year survival rate. Biotherapy 1(2):103–107

    Article  PubMed  CAS  Google Scholar 

  • Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7(7):715–729

    Article  PubMed  CAS  Google Scholar 

  • Osborne CK, Boldt DH, Clark GM, Trent JM (1983) Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 43(8):3583–3585

    PubMed  CAS  Google Scholar 

  • Pogribny IP, Bagnyukova TV, Tryndyak VP, Muskhelishvili L, Rodriguez-Juarez R, Kovalchuk O, Han T, Fuscoe JC, Ross SA, Beland FA (2007) Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis. Toxicol Appl Pharmacol 225(1):61–69

    Article  PubMed  CAS  Google Scholar 

  • Rau U, Gura E, Olszewski E, Wagner F (1992) enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol 9(1):19–25

    Article  CAS  Google Scholar 

  • Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62(3):244–278

    PubMed  CAS  Google Scholar 

  • Shin A, Kim J, Lim SY, Kim G, Sung MK, Lee ES, Ro J (2010) Dietary mushroom intake and the risk of breast cancer based on hormone receptor status. Nutr Cancer 62(4):476–483

    Article  PubMed  Google Scholar 

  • Sullivan R, Smith JE, Rowan NJ (2006) Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol Med 49(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Tanji S, Akima K, Horiba M, Amemiya K, Aimoto T (1990) Studies on metabolism and disposition of sizofiran (SPG), an anti-tumor polysaccharide. III. Degradation and excretion of SPG in rats. Yakugaku Zasshi 110(11):869–875

    PubMed  CAS  Google Scholar 

  • Tokuyasu H, Takeda K, Kawasaki Y, Sakaguchi Y, Isowa N, Shimizu E, Ueda Y (2010) High plasma concentration of beta-d-glucan after administration of sizofiran for cervical cancer. Int J Gen Med 3:273–277

    PubMed  CAS  Google Scholar 

  • Tryndyak VP, Kovalchuk O, Muskhelishvili L, Montgomery B, Rodriguez-Juarez R, Melnyk S, Ross SA, Beland FA, Pogribny IP (2007) Epigenetic reprogramming of liver cells in tamoxifen-induced rat hepatocarcinogenesis. Mol Carcinog 46(3):187–197

    Article  PubMed  CAS  Google Scholar 

  • Tsai-Turton M, Nakamura BN, Luderer U (2007) Induction of apoptosis by 9,10-dimethyl-1,2-benzanthracene in cultured preovulatory rat follicles is preceded by a rise in reactive oxygen species and is prevented by glutathione. Biol Reprod 77(3):442–451

    Article  PubMed  CAS  Google Scholar 

  • Williams GM, Iatropoulos MJ, Karlsson S (1997) Initiating activity of the anti-estrogen tamoxifen, but not toremifene in rat liver. Carcinogenesis 18(11):2247–2253

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Pae M, Ren Z, Guo Z, Smith D, Meydani SN (2007) Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice. J Nutr 137(6):1472–1477

    PubMed  CAS  Google Scholar 

  • Youn MJ, Kim JK, Park SY, Kim Y, Park C, Kim ES, Park KI, So HS, Park R (2009) Potential anticancer properties of the water extract of Inonotus [corrected] obliquus by induction of apoptosis in melanoma B16-F10 cells. J Ethnopharmacol 121(2):221–228

    Article  PubMed  Google Scholar 

  • Yu L, Fernig DG, Smith JA, Milton JD, Rhodes JM (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 53(19):4627–4632

    PubMed  CAS  Google Scholar 

  • Zhang GJ, Kimijima I, Onda M, Kanno M, Sato H, Watanabe T, Tsuchiya A, Abe R, Takenoshita S (1999) Tamoxifen-induced apoptosis in breast cancer cells relates to down-regulation of bcl-2, but not bax and bcl-X(L), without alteration of p53 protein levels. Clin Cancer Res Off J Am Assoc Cancer Res 5(10):2971–2977

    CAS  Google Scholar 

  • Zhang M, Huang J, Xie X, Holman CD (2009) Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer 124(6):1404–1408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Swedish Research Links (VR) to E. Aleem and by an institutional grant from the city for scientific research and technology applications to A. Daba.

Conflict of interest

The authors declare that they have no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiman Aleem.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 294 kb)

432_2012_1224_MOESM2_ESM.tif

Supplementary material 2. Caspase-3 labelling index in comparison with the apoptotic index in mammary gland and liver. In general increase in the percentage of apoptotic cells was associated with an increase in caspase-3 expression in comparison with control (a) Histogram showing the effect of different drug treatments (x-axis) on the caspase-3 labelling index (LI) in the mammary gland (y-axis) in comparison with the apoptotic index by TUNEL assay. Data are expressed as mean ± standard deviation. DMBA treatment increased the caspase-3 LI by 128-fold, while SCH resulted in twofold increase in comparison with control. Treatment of mice bearing DMBA-initiated tumours with TAM upregulated the caspase-3 LI by twofold in comparison with DMBA. Black columns indicate the percentage of apoptotic cells by TUNEL assay, grey columns indicate the caspase-3 labelling index, (b) Histogram showing the effect of different drug treatments (x-axis) on the caspase-3 labelling index (LI) in liver (y-axis). Data are expressed as mean ± standard deviation. SCH resulted in twofold increase in caspase-3 labelling in comparison with DMBA. Black columns indicate the percentage of apoptotic cells by TUNEL assay and grey columns indicate the caspase-3 labelling index. (TIFF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, A., Daba, A., Baddour, N. et al. Schizophyllan inhibits the development of mammary and hepatic carcinomas induced by 7,12 dimethylbenz(α)anthracene and decreases cell proliferation: comparison with tamoxifen. J Cancer Res Clin Oncol 138, 1579–1596 (2012). https://doi.org/10.1007/s00432-012-1224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1224-0

Keywords

Navigation