Skip to main content
Log in

Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing

  • Published:
Journal of Industrial Microbiology

Summary

Glucan formation ofSchizophyllum commune andSclerotium glucanicum were investigated. Process data obtained during batch cultivation are presented. Glucan release can be improved by oxygen limitation. Thus, growth and glucan release are influenced by oxygen in opposite ways. Possible pathways of this oxygen-dependent regulation are discussed. A draft-tube/propeller system, rushtonturbine-, fan- and helicon-ribbon-impeller as well as a fundaspi and intermig agitator were tested. The 4-bladed fan impeller withd *=0.64 yielded the best results, since effective bulk mixing is much more important than bubble break up (micromixing) with regard to this system. Fed-batch cultivation always resulted in higher rates of glucan formation than the batch process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartnicki-Garcia, S. 1973. Fundamental aspects of hyphal morphogenesis. Symp. Soc. Gen. Microbiol. 23: 245–267.

    Google Scholar 

  2. Bluhm, T.L., Y. Deslandes and R.H. Marchessault. 1982. Solid-state and solution conformation of scleroglucan. Carbohydr. Res. 100: 117–130.

    Google Scholar 

  3. Brauer, H.. 1971. Grundlagen der Ein- und Mehrphasenströmung. Sauerländer Verlag, Frankfurt a.M., F.R.G.

    Google Scholar 

  4. Catley, B.J. 1983. Regulation of yeast and fungal polysaccharides excluding chitin and cellulose. In: Progress in industrial microbiology, (Bushel, M.E., ed.) 18: 129–200, Elsevier, Amsterdam.

    Google Scholar 

  5. Compere, A.L. and L. Griffith. 1981. Scleroglucan biopolymer production, properties and economics. In: Advances in Biotechnology (Moo-Young, M., ed.) 3: 541–546, Pergamon Press, New York.

    Google Scholar 

  6. Evans, B. 1980. Relationships between morphology and metabolism in the dimorphic fungus Mycothypha. Ph. D. Thesis, Technical University of Braunschweig, F.R.G.

    Google Scholar 

  7. Garraway, M.O. and R.C. Evans (eds.). 1984. In: Fungal nutrition and physiology, John Wiley and Sons, New York.

    Google Scholar 

  8. Gbwonyo, K., D. Dimasi and B.C. Buckland. 1986. The use of hydrofoil impellers to improve oxygen transfer efficiency in viscous mycelial fermentations. In: Int. Conf. on Bioreactor Fluid Dynamics, pp. 281–299, Cambridge, England.

  9. Griffith, W.L. and A.L. Compere. 1978. Production of a high viscosity glucan bySclerotium rolfsii ATCC 15206. Dev. Ind. Microbiol. 19: 609–617.

    Google Scholar 

  10. Haarstrick, A., U. Rau and F. Wagner. 1990. Cross flow filtration as a method of separating fungal cells and purifying the polysaccharide produced. Bioproc. Eng., submitted.

  11. Halleck, F.E. 1967. Polysaccharides and methods for production thereof. US Patent 3.301.848.

  12. Kashiwagi, Y., T. Norisuye and H. Fuyita. 1981. Triple helix ofSchizophyllum commune polysaccharide in dilute solution. Macromol., 14: 1220–1225.

    Google Scholar 

  13. Kipke, K.D. and E. Todtenhaupt. 1982. Rühren von nicht-Newtonschen Flüssigkeiten. Verfahrenstechnik 16: 497–503.

    Google Scholar 

  14. Lawford, H. and J. Rousseau. 1989. Effect of oxygen on the rate of β-1,3-glucan microbial exopolysaccharide production. Biotechnol. Lett. 11: 125–130.

    Google Scholar 

  15. Münzer, S. 1989. Produktion und Charakterisierung eines vonSchizophyllum commune ATCC 38548 gebildeten extrazellulären β-1,3-glucans. Ph. D. Thesis, Technical University of Braunschweig, F.R.G.

    Google Scholar 

  16. Nickerson, W. and F. Falcone. 1956. Identification of protein disulfide reductase as a cellular division enzyme in yeasts. Science, 124: 722–723.

    Google Scholar 

  17. Norisuye, T., T. Yanaki and H. Fujita. 1980. Triple helix of aSchizophyllum commune polysaccharide in aqueous solution. J. Poly. Sci. 18: 547–558.

    Google Scholar 

  18. Pace, G.W. and R.C. Righelato. 1980. Production of extracellular microbial polysaccharides. In: Adv. Biochem. Eng. (Fiechter, A., ed.), 15: 41–70, Springer Verlag, Hamburg, F.R.G.

    Google Scholar 

  19. Peters, H.U., H. Herbst, E. Widjayanti, A. Schumpe and W.-D. Deckwer. 1990. The influence of agitation rate on xanthan production rate byXanthomonas campestris. Biotechnol. Bioeng., submitted.

  20. Pörtner, R. and U. Werner. 1989. Betrachtungen zur Effektivität von Rührern bei Homogenisierprozessen und viskoelastischen Flüssigkeiten. Chem.-Ing.-Tech. 61: 250–251.

    Google Scholar 

  21. Rau, U. and F. Wagner. 1987. Non-Newtonian flow behaviour of colloid dispers glucan solutions. Biotechnol. Lett. 9: 95–100.

    Google Scholar 

  22. Rau, U., E. Gura, A. Schliephaake and F. Wagner. 1989. Influence of processing on the formation of exopolysaccharides by filamentously growing fungi. In: Dechema Biotechnology Conferences (Behrens, D. and A.J. Driesel, eds.), 3 part B: pp. 571–574.

  23. Rau, U., R.-J. Müller, K. Cordes and J. Klein. 1990. Process and molecular data of branched 1,3-β-d-glucans, in comparison withXanthan. Bioproc. Eng. 5: 89–93.

    Google Scholar 

  24. Rho, D., A. Mulchandini, J.H.T. Luong and A. Le Duy. 1988. Oxygen requirement in pullulan fermentation. Appl. Microbiol. Biotechnol. 28: 361–366.

    Google Scholar 

  25. Rosenthal, G.A. 1985. Colorimetric and fluorimetric detection of amino acids. In: Chemistry and Biochemistry of Amino Acids (Barret, G.C., ed.), pp. 573–590, Chapman and Hall Inc., London.

    Google Scholar 

  26. Schügerl, K. 1981. Oxygen transfer into highly viscous media. In: Advances in Biochemical Engineering (Fiechter, A., ed.) 19: 71–174.

  27. Shamlou, P.A. and M.F. Edwards. 1985. Power consumptions of helical ribbon mixers in viscous Newtonian and non-Newtonian fluids. Chem. Eng. Sc. 40: 1773–1781.

    Google Scholar 

  28. Sietsma, J.H. and J.G.H. Wessels. 1977. Chemical analysis of the hyphal wall ofSchizophyllum commune. Biochim. Biophys. Acta. 496: 225–239.

    Google Scholar 

  29. Steiner, W., R.M. Lafferty, I. Gomes and H. Esterbauer. 1987. Studies on a wild strain ofSchizophyllum commune. Biotechnol. Bioeng. 30: 169–178.

    Google Scholar 

  30. Stephan, D. 1986. Bildung von β-1,3-Glucanen aus Mono-, Di- und Polysacchariden mitSclerotium rolfsii und deren physikochemische Charakterisierung. Ph. D. Thesis, Technical University of Braunschweig, F.R.G.

    Google Scholar 

  31. Sutherland, I.W. 1983. Extracellular polysaccharides. In: Biotechnology (Rehm, H.J. and G. Reed, eds.) 3: 531–574.

  32. Thompson B.G. and W.T. Leps. 1986. Effect of dissolved oxygen on growth and production of exopolysaccharide byRhizobium trifolii. J. Ferment. Technol. 64: 335–338.

    Google Scholar 

  33. Tuffile, C.M. and F. Pinho. 1970. Determination of oxygentransfer coefficients in viscous streptomycete fermentations. Biotechnol. Bioeng. 12: 849–871.

    Google Scholar 

  34. Turian, G. 1976. Reducing power of hyphal tips and vegetative apical dominance in fungi. Experentia. 32: 989–991.

    Google Scholar 

  35. Wessels, J.G.H. and J.H. Sietsma 1979. In: Fungal walls and hyphal growth (Burnett, J.H. and A.P.J. Trinci, eds.), pp. 27–48, Cambridge University Press, Cambridge.

    Google Scholar 

  36. Yanaki, T., T. Kojima and T. Norisuye. 1981. Triple helix of scleroglucan in dilute aqueous sodium hydroxide. Pol. J., 13: 1135–1143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, U., Gura, E., Olszewski, E. et al. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. Journal of Industrial Microbiology 9, 19–25 (1992). https://doi.org/10.1007/BF01576364

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576364

Key words

Navigation