Skip to main content

Advertisement

Log in

Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Ovarian cancer accounts for the highest mortality among all gynecological cancers, mainly due to the fast developing chemoresistance. The death ligand TRAIL induces apoptosis and is able to sensitize tumor cells to cytostatic drugs without affecting physiological tissue. Combined treatment of TRAIL and the antidiabetic acting PPARγ ligands was shown to induce apoptosis synergistically in different ovarian cancer cell lines.

Methods

To investigate feasible TRAIL-dependent inhibition of proliferation and induction of apoptosis in chemoresistant ovarian cancer cell lines, the drug- and TRAIL-sensitive HEY cell line was utilized to develop subclones with selective resistance against cisplatin, etoposide, docetaxel, paclitaxel, gemcitabine and pemetrexed, as well as against TRAIL as control cell line. Expression of the key factors of the TRAIL signaling pathway, TRAIL receptors 1–4, caspase-8, FLIP and XIAP, was analyzed before and after TRAIL treatment by immunoblotting.

Results

Cell proliferation experiments showed TRAIL-dependent inhibition that was further increased by combination treatment with the PPARγ ligands. Simultaneous exposure of TRAIL and the PPARγ ligands also resulted in enhanced induction of apoptosis even in partial TRAIL-resistant HEY cell lines. In the parental HEY cell line, additional treatment with the PPARγ ligands led to an increased protein expression of DR5 and a further decline of XIAP expression.

Conclusion

Therefore, the combinational treatment with TRAIL and PPARγ ligands might be a promising experimental therapy because the PPARγ ligands, especially d15-PGJ2, sensitize drug-resistant ovarian cancer cells to TRAIL-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedini MR, Qiu Q, Yan X, Tsang BK (2004) Possible role of flice-like inhibitory protein (flip) in chemoresistant ovarian cancer cells in vitro. Oncogene 23(42):6997–7004

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble apo2 ligand. J Clin Invest 104(2):155–162

    Article  PubMed  CAS  Google Scholar 

  • Asselin E, Mills GB, Tsang BK (2001) Xiap regulates akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 61(5):1862–1868

    PubMed  CAS  Google Scholar 

  • Austin CD, Lawrence DA, Peden AA, Varfolomeev EE, Totpal K, De Maziere AM, Klumperman J, Arnott D, Pham V, Scheller RH, Ashkenazi A (2006) Death-receptor activation halts clathrin-dependent endocytosis. Proc Natl Acad Sci USA 103(27):10283–10288

    Article  PubMed  CAS  Google Scholar 

  • Avis I, Martinez A, Tauler J, Zudaire E, Mayburd A, Abu-Ghazaleh R, Ondrey F, Mulshine JL (2005) Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res 65(10):4181–4190

    Article  PubMed  CAS  Google Scholar 

  • Belyanskaya LL, Ziogas A, Hopkins-Donaldson S, Kurtz S, Simon HU, Stahel R, Zangemeister-Wittke U (2008) Trail-induced survival and proliferation of sclc cells is mediated by erk and dependent on trail-r2/dr5 expression in the absence of caspase-8. Lung Cancer 60(3):355–365

    Article  PubMed  Google Scholar 

  • Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J (2000) Trail receptor-2 signals apoptosis through fadd and caspase-8. Nat Cell Biol 2(4):241–243

    Article  PubMed  CAS  Google Scholar 

  • Bonofiglio D, Cione E, Qi H, Pingitore A, Perri M, Catalano S, Vizza D, Panno ML, Genchi G, Fuqua SA, Ando S (2009) Combined low doses of ppargamma and rxr ligands trigger an intrinsic apoptotic pathway in human breast cancer cells. Am J Pathol 175(3):1270–1280

    Article  PubMed  CAS  Google Scholar 

  • Brautigam K, Bauerschlag DO, Weigel MT, Biernath-Wupping J, Bauknecht T, Arnold N, Maass N, Meinhold-Heerlein I (2009) Combination of enzastaurin and pemetrexed inhibits cell growth and induces apoptosis of chemoresistant ovarian cancer cells regulating extracellular signal-regulated kinase 1/2 phosphorylation. Transl Oncol 2(3):164–173

    PubMed  Google Scholar 

  • Campbell MJ, Carlberg C, Koeffler HP (2008) A role for the ppargamma in cancer therapy. PPAR Res 2008:314974

    PubMed  Google Scholar 

  • Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351(24):2519–2529. doi:351/24/2519[pii]10.1056/NEJMra041842

    Article  PubMed  CAS  Google Scholar 

  • Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X (2002) C-flip(l) is a dual function regulator for caspase-8 activation and cd95-mediated apoptosis. EMBO J 21(14):3704–3714

    Article  PubMed  CAS  Google Scholar 

  • Fenner MH, Elstner E (2005) Peroxisome proliferator-activated receptor-gamma ligands for the treatment of breast cancer. Expert Opin Investig Drugs 14(6):557–568

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    Article  PubMed  CAS  Google Scholar 

  • Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL (2000) Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and trail. Mol Cell Biol 20(1):205–212

    Article  PubMed  CAS  Google Scholar 

  • Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of trail-induced apoptosis in human melanoma cells. J Immunol 161(6):2833–2840

    PubMed  CAS  Google Scholar 

  • Grotzer MA, Eggert A, Zuzak TJ, Janss AJ, Marwaha S, Wiewrodt BR, Ikegaki N, Brodeur GM, Phillips PC (2000) Resistance to trail-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19(40):4604–4610

    Article  PubMed  CAS  Google Scholar 

  • Han H, Shin SW, Seo CY, Kwon HC, Han JY, Kim IH, Kwak JY, Park JI (2007) 15-deoxy-delta 12, 14-prostaglandin j2 (15d-pgj 2) sensitizes human leukemic hl-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (trail)-induced apoptosis through akt downregulation. Apoptosis 12(11):2101–2114

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW, Parney IF, Roa WH, Petruk KC (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (trail) mediated apotosis in human malignant glioma cells. Cancer Res 61(3):1162–1170

    PubMed  CAS  Google Scholar 

  • Holen I, Croucher PI, Hamdy FC, Eaton CL (2002) Osteoprotegerin (opg) is a survival factor for human prostate cancer cells. Cancer Res 62(6):1619–1623

    PubMed  CAS  Google Scholar 

  • Horak P, Pils D, Kaider A, Pinter A, Elandt K, Sax C, Zielinski CC, Horvat R, Zeillinger R, Reinthaller A, Krainer M (2005) Perturbation of the tumor necrosis factor–related apoptosis-inducing ligand cascade in ovarian cancer: overexpression of flipl and deregulation of the functional receptors dr4 and dr5. Clin Cancer Res 11(24 Pt 1):8585–8591

    Article  PubMed  CAS  Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular flip. Nature 388(6638):190–195

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  • Kim K, Fisher MJ, Xu SQ, el-Deiry WS (2000) Molecular determinants of response to trail in killing of normal and cancer cells. Clin Cancer Res 6(2):335–346

    PubMed  CAS  Google Scholar 

  • Kim Y, Suh N, Sporn M, Reed JC (2002) An inducible pathway for degradation of flip protein sensitizes tumor cells to trail-induced apoptosis. J Biol Chem 277(25):22320–22329

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  PubMed  CAS  Google Scholar 

  • Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular flice-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the cd95 death-inducing signaling complex. J Biol Chem 276(23):20633–20640

    Article  PubMed  CAS  Google Scholar 

  • Lane D, Cartier A, L’Esperance S, Cote M, Rancourt C, Piche A (2004) Differential induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand in human ovarian carcinoma cells. Gynecol Oncol 93(3):594–604

    Article  PubMed  CAS  Google Scholar 

  • Lemke J, Noack A, Adam D, Tchikov V, Bertsch U, Roder C, Schutze S, Wajant H, Kalthoff H, Trauzold A (2010) Trail signaling is mediated by dr4 in pancreatic tumor cells despite the expression of functional dr5. J Mol Med. doi:10.1007/s00109-010-0619-0

  • Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M, Vanderhyden B, Faught W, Fung MF, Senterman M, Korneluk RG, Tsang BK (2001) Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 142(1):370–380

    Article  PubMed  CAS  Google Scholar 

  • Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, Grutter MG (2002) The long form of flip is an activator of caspase-8 at the fas death-inducing signaling complex. J Biol Chem 277(47):45162–45171

    Article  PubMed  CAS  Google Scholar 

  • Nakata S, Yoshida T, Shiraishi T, Horinaka M, Kouhara J, Wakada M, Sakai T (2006) 15-deoxy-delta12, 14-prostaglandin j(2) induces death receptor 5 expression through mrna stabilization independently of ppargamma and potentiates trail-induced apoptosis. Mol Cancer Ther 5(7):1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Shiraki K, Inoue H, Yamanaka Y, Kawakita T, Saitou Y, Yamaguchi Y, Enokimura N, Yamamoto N, Sugimoto K, Murata K, Nakano T (2003) 15-deoxy-delta-12-14-pgj2 regulates apoptosis induction and nuclear factor-kappab activation via a peroxisome proliferator-activated receptor-gamma-independent mechanism in hepatocellular carcinoma. Lab Invest 83(10):1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Partridge EE, Barnes MN (1999) Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin 49(5):297–320

    Article  PubMed  CAS  Google Scholar 

  • Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690

    Article  PubMed  CAS  Google Scholar 

  • Plissonnier ML, Fauconnet S, Bittard H, Lascombe I (2010) Insights on distinct pathways of thiazolidinediones (ppargamma ligand)-promoted apoptosis in trail-sensitive or -resistant malignant urothelial cells. Int J Cancer. doi:10.1002/ijc.25189

  • Rumi MA, Ishihara S, Kazumori H, Kadowaki Y, Kinoshita Y (2004) Can ppar gamma ligands be used in cancer therapy? Curr Med Chem Anticancer Agents 4(6):465–477

    Article  PubMed  CAS  Google Scholar 

  • Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874

    Article  PubMed  CAS  Google Scholar 

  • Safa AR, Day TW, Wu CH (2008) Cellular flice-like inhibitory protein (c-flip): a novel target for cancer therapy. Curr Cancer Drug Targets 8(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Sallman DA, Chen X, Zhong B, Gilvary DL, Zhou J, Wei S, Djeu JY (2007) Clusterin mediates trail resistance in prostate tumor cells. Mol Cancer Ther 6(11):2938–2947

    Article  PubMed  CAS  Google Scholar 

  • Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S (2005) Surface trail decoy receptor-4 expression is correlated with trail resistance in mcf7 breast cancer cells. BMC Cancer 5:54

    Article  PubMed  Google Scholar 

  • Sasaki H, Sheng Y, Kotsuji F, Tsang BK (2000) Down-regulation of x-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60(20):5659–5666

    PubMed  CAS  Google Scholar 

  • Schimmer AD, Dalili S, Batey RA, Riedl SJ (2006) Targeting xiap for the treatment of malignancy. Cell Death Differ 13(2):179–188

    Article  PubMed  CAS  Google Scholar 

  • Schultze K, Bock B, Eckert A, Oevermann L, Ramacher D, Wiestler O, Roth W (2006) Troglitazone sensitizes tumor cells to trail-induced apoptosis via down-regulation of flip and survivin. Apoptosis 11(9):1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Shipman CM, Croucher PI (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63(5):912–916

    PubMed  CAS  Google Scholar 

  • Sporn MB, Suh N, Mangelsdorf DJ (2001) Prospects for prevention and treatment of cancer with selective ppargamma modulators (sparms). Trends Mol Med 7(9):395–400

    Article  PubMed  CAS  Google Scholar 

  • Sussman RT, Ricci MS, Hart LS, Sun SY, El-Deiry WS (2007) Chemotherapy-resistant side-population of colon cancer cells has a higher sensitivity to trail than the non-sp, a higher expression of c-myc and trail-receptor dr4. Cancer Biol Ther 6(9):1490–1495

    Article  PubMed  CAS  Google Scholar 

  • Tomek S, Horak P, Pribill I, Haller G, Rossler M, Zielinski CC, Pils D, Krainer M (2004) Resistance to trail-induced apoptosis in ovarian cancer cell lines is overcome by co-treatment with cytotoxic drugs. Gynecol Oncol 94(1):107–114

    Article  PubMed  CAS  Google Scholar 

  • Van Valen F, Fulda S, Schafer KL, Truckenbrod B, Hotfilder M, Poremba C, Debatin KM, Winkelmann W (2003) Selective and nonselective toxicity of trail/apo2l combined with chemotherapy in human bone tumour cells vs. Normal human cells. Int J Cancer 107(6):929–940

    Article  PubMed  Google Scholar 

  • Vaux DL, Silke J (2003) Mammalian mitochondrial iap binding proteins. Biochem Biophys Res Commun 304(3):499–504

    Article  PubMed  CAS  Google Scholar 

  • Vignati S, Codegoni A, Polato F, Broggini M (2002) Trail activity in human ovarian cancer cells: potentiation of the action of cytotoxic drugs. Eur J Cancer 38(1):177–183

    Article  PubMed  CAS  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P (2002) Tnf-related apoptosis inducing ligand (trail) and its receptors in tumor surveillance and cancer therapy. Apoptosis 7(5):449–459

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Zhang J, Bellail A, Jiang W, Hugh J, Kneteman NM, Hao C (2007) Inhibition of rip and c-flip enhances trail-induced apoptosis in pancreatic cancer cells. Cell Signal 19(11):2237–2246

    Article  PubMed  CAS  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the tnf family that induces apoptosis. Immunity 3(6):673–682

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Xing H, Gao Q, Chen G, Lu Y, Wang S, Ma D (2005) Regulation of htra2/omi by x-linked inhibitor of apoptosis protein in chemoresistance in human ovarian cancer cells. Gynecol Oncol 97(2):413–421

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Zhang Y, Rosado LA, Zhang B (2009) Repeated treatment with subtoxic doses of trail induces resistance to apoptosis through its death receptors in mda-mb-231 breast cancer cells. Mol Cancer Res 7(11):1835–1844

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yoshida T, Zhang B (2009) Trail induces endocytosis of its death receptors in mda-mb-231 breast cancer cells. Cancer Biol Ther 8(10):917–922

    Article  PubMed  CAS  Google Scholar 

  • Zou W, Liu X, Yue P, Khuri FR, Sun SY (2007) Ppargamma ligands enhance trail-induced apoptosis through dr5 upregulation and c-flip downregulation in human lung cancer cells. Cancer Biol Ther 6(1):99–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ursula Grünn for developing the HEY subclones resistant to cisplatin, etoposide, docetaxel, paclitaxel and TRAIL.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Bräutigam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräutigam, K., Biernath-Wüpping, J., Bauerschlag, D.O. et al. Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines. J Cancer Res Clin Oncol 137, 875–886 (2011). https://doi.org/10.1007/s00432-010-0952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0952-2

Keywords

Navigation