Skip to main content
Log in

15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

While tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising new agent for the treatment of cancer, resistance to TRAIL remains a therapeutic challenge. Identifying agents to use in combination with TRAIL to enhance apoptosis in leukemia cells would increase the potential utility of this agent as a therapy for leukemia. Here, we show that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural ligand for peroxisome proliferator-activated receptor γ (PPARγ), can sensitize TRAIL-resistant leukemic HL-60 cells to TRAIL-induced apoptosis. The sensitization to TRAIL-induced apoptosis by 15d-PGJ2 was not blocked by a PPARγ inhibitor (GW9662), suggesting a PPARγ-independent mechanism. This process was accompanied by activation of caspase-8, caspase-9, and caspase-3 and was concomitant with Bid and PARP cleavage. We observed significant decreases in XIAP, Bcl-2, and c-FLIP after cotreatment with 15d-PGJ2 and TRAIL. We also observed the inhibition of Akt expression and phosphorylation by cotreatment with 15d-PGJ2 and TRAIL. Furthermore, inactivation of Akt by Akt inhibitor IV sensitized human leukemic HL-60 cells to TRAIL, indicating a key role for Akt inhibition in these events. Taken together, these findings indicate that 15d-PGJ2 may augment TRAIL-induced apoptosis in human leukemia cells by down-regulating the expression and phosphorylation of Akt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed  CAS  Google Scholar 

  2. Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  3. LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75

    Article  PubMed  CAS  Google Scholar 

  4. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818

    Article  PubMed  CAS  Google Scholar 

  5. Schneider P, Thome M, Burns K et al (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7:831–836

    Article  PubMed  CAS  Google Scholar 

  6. Sheridan JP, Marsters SA, Pitti RM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  PubMed  CAS  Google Scholar 

  7. Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15:1022–1032

    Article  PubMed  CAS  Google Scholar 

  8. Ashkenazi A (2002) Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nat Rev Cancer 2:420–430

    Article  PubMed  CAS  Google Scholar 

  9. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348

    Article  PubMed  CAS  Google Scholar 

  10. Kayagaki N, Yamaguchi N, Nakayama M et al (1999) Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol 162:2639–2647

    PubMed  CAS  Google Scholar 

  11. Kayagaki N, Yamaguchi N, Nakayama M et al (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163:1906–1913

    PubMed  CAS  Google Scholar 

  12. Mitsiades CS, Treon SP, Mitsiades N et al (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98:795–804

    Article  PubMed  CAS  Google Scholar 

  13. Chen Q, Gong B, Mahmoud-Ahmed AS et al (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98:2183–2192

    Article  PubMed  CAS  Google Scholar 

  14. Plasilova M, Zivny J, Jelinek J et al (2002) TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 16:67–73

    Article  PubMed  CAS  Google Scholar 

  15. Uno K, Inukai T, Kayagaki N et al (2003) TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells. Blood 101:3658–3667

    Article  PubMed  CAS  Google Scholar 

  16. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59:734–741

    PubMed  CAS  Google Scholar 

  17. Chinnaiyan AM, Prasad U, Shankar S et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 97:1754–1759

    Article  PubMed  CAS  Google Scholar 

  18. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis inducing ligand in vitro and in vivo. Cancer Res 60:847–853

    PubMed  CAS  Google Scholar 

  19. LeBlanc H, Lawrence D, Varfolomeev E et al (2002) Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8:274–281

    Article  PubMed  CAS  Google Scholar 

  20. Griffith TS, Lynch DH (1998) TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 10:559–563

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Thakkar H, Tyan F et al (2001) Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20:6073–6083

    Article  PubMed  CAS  Google Scholar 

  22. Chan TO, Rittenhouse SE, Tsichlis PN (1999) Akt/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014

    Article  PubMed  CAS  Google Scholar 

  23. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  PubMed  CAS  Google Scholar 

  24. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  25. Beresford SA, Davies MA, Gallick GE, Donato NJ (2001) Differential effects of phosphatidylinositol-3/Akt kinase inhibition on apoptotic sensitization to cytokines in LNCaP and PC-3 prostate cancer cells. J Interferon Cytokine Res 21:313–322

    Article  PubMed  CAS  Google Scholar 

  26. Bortul R, Tazzari PL, Cappellini A et al (2003) Constitutively active Akt1 protects HL-60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-κB activation and c-FLIPL up-regulation. Leukemia 17:379–389

    Article  PubMed  CAS  Google Scholar 

  27. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  PubMed  CAS  Google Scholar 

  28. Hirase N, Yanase T, Mu Y et al (1999) Thiazolidinedione induces apoptosis and monocytic differentiation in the promyelocytic leukemia cell line HL60. Oncology 57:17–26

    Article  PubMed  CAS  Google Scholar 

  29. Galetto R, Albajar M, Polanco JI, Zakin MM, Rodriguez-Rey JC (2001) Identification of a peroxisome-proliferator-activated-receptor response element in the apolipoprotein E gene control region. Biochem J 357:521–527

    Article  PubMed  CAS  Google Scholar 

  30. Liu JJ, Liu PQ, Lin DJ et al (2007) Downregulation of cyclooxygenase-2 expression and activation of caspase-3 are involved in peroxisome proliferator-activated receptor-γ agonists induced apoptosis in human monocyte leukemia cells in vitro. Ann Hematol 86:173–183

    Article  PubMed  CAS  Google Scholar 

  31. Forman BM, Tontonez P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812

    Article  PubMed  CAS  Google Scholar 

  32. Kliewer SA, Sundseth SS, Jones SA et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94:4318–4323

    Article  PubMed  CAS  Google Scholar 

  33. Piva R, Gianferretti P, Ciucci A, Taulli R, Belardo G, Santoro MG (2005) 15-Deoxy-Δ12,14-prostaglandin J2 induces apoptosis in human malignant B cells: an effect associated with inhibition of NF-κB activity and down-regulation of antiapoptotic proteins. Blood 105:1750–1758

    Article  PubMed  CAS  Google Scholar 

  34. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819

    Article  PubMed  CAS  Google Scholar 

  35. Laurora S, Pizzimenti S, Briatore F et al (2003) Peroxisome proliferator-activated receptor ligands affect growth-related gene expression in human leukemic cells. J Pharmacol Exp Ther 305:932–942

    Article  PubMed  CAS  Google Scholar 

  36. Nencioni A, Lauber K, Grunebach F et al (2003) Cyclopentenone prostaglandins induce lymphocyte apoptosis by activating the mitochondrial apoptosis pathway independent of external death receptor signaling. J Immunol 171:5148–5156

    PubMed  CAS  Google Scholar 

  37. Boyault S, Simonin MA, Bianchi A et al (2001) 15-Deoxy-delta 12,14-PGJ2, but not troglitazone, modulates IL-1 beta effects in human chondrocytes by inhibiting NF-kappaB and AP-1 activation pathways. FEBS Lett 501:24–30

    Article  PubMed  CAS  Google Scholar 

  38. Ward C, Dransfield I, Murray J, Farrow SN, Haslett C, Rossi AG (2002) Prostaglandin D2 and its metabolites induce caspase-dependent granulocyte apoptosis that is mediated via inhibition of I kappa B alpha degradation using a peroxisome proliferator-activated receptor-gamma-independent mechanism. J Immunol 168:6232–6243

    PubMed  CAS  Google Scholar 

  39. Goke R, Goke A, Goke B, El-Deiry WS, Chen Y (2001) Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21waf1/cip1. Digestion 64:75–80

    Article  PubMed  CAS  Google Scholar 

  40. Gao CF, Ren S, Zhang L et al (2001) Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp Cell Res 265:145–151

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y (1999) Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett 455:135–139

    Article  PubMed  CAS  Google Scholar 

  42. Fillmore GC, Wang Q, Carey MJ, Kim CH, Elenitoba-Johnson KS, Lim MS (2005) Expression of Akt (protein kinase B) and its isoforms in malignant lymphomas. Leuk Lymphoma 46:1765–1773

    Article  PubMed  CAS  Google Scholar 

  43. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  44. Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanism of TRAIL: apoptosis through mitochondrial-dependent and -independent pathway. Oncogene 20:2122–2133

    Article  PubMed  CAS  Google Scholar 

  45. Shankar S, Singh TR, Chen X, Thakkar H, Firnin J, Srivastava RK (2004) The sequential treatment with ionizing radiation followed by TRAIL/Apo-2L reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice. Int J Oncol 24:1133–1140

    PubMed  CAS  Google Scholar 

  46. Shankar S, Srivastava RK (2004) Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 7:139–156

    Article  PubMed  CAS  Google Scholar 

  47. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63:5390–5400

    PubMed  CAS  Google Scholar 

  48. Shankar S, Singh TR, Srivastava RK (2004) Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: intracellular mechanisms. Prostate 61:35–49

    Article  PubMed  CAS  Google Scholar 

  49. Skorski T, Kanakaraj P, Nieborowski-Skorska M et al (1995) Phosphatidylinositol 3-kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736

    PubMed  CAS  Google Scholar 

  50. Palakurthi SS, Aktas H, Grubissich LM, Mortensen RM, Halperin JA (2001) Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res 61:6213–6218

    PubMed  CAS  Google Scholar 

  51. Nakata S, Yoshida T, Shiraishi T et al (2006) 15-Deoxy-Δ12,14-prostaglandin J2 induces death receptor 5 expression through mRNA stabilization independently of PPARγ and potentiates TRAIL-induced apoptosis. Mol Cancer Ther 5:1827–1835

    Article  PubMed  CAS  Google Scholar 

  52. Kim Y, Suh N, Sporn M, Reed JC (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 277:22320–22329

    Article  PubMed  CAS  Google Scholar 

  53. Lawlor MA, Alessi DR (2002) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910

    Google Scholar 

  54. Martelli AM, Tazzari PL, Tabellini G et al (2003) A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 17:1794–1805

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation through the Medical Science and Engineering Research Center for Cancer Molecular Therapy at Dong-A University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-In Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, H., Shin, SW., Seo, CY. et al. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation. Apoptosis 12, 2101–2114 (2007). https://doi.org/10.1007/s10495-007-0124-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0124-2

Keywords

Navigation