Skip to main content
Log in

Down-regulation of β-centractin might be involved in dendritic cells dysfunction and subsequent hepatocellular carcinoma immune escape: a proteomic study

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Aims

Proteomic study was used to clarify the mechanism of hepatocellular carcinoma (HCC) immune escape concerning Dendritic cells (DCs’) dysfunction and their association with HCC invasion.

Methods

Human peripheral blood mononuclear cells (PBMCs) derived DCs from healthy donors were pulsed with soluble cell lysates prepared from different metastatic potential human HCC cell lines. The total protein of these DCs was analyzed by two-dimensional electrophoresis and Electro-Spray Mass Spectrometry. The allostimulatoy capacity and phenotype of these DCs were also evaluated. The clinical significance of β-centractin, one of the largest quantitative changed spot, down-regulation in DCs was further evaluated in autologous PBMCs derived DCs pulsed with auto-tumor lysates in 26 HCC patients.

Results

The expression of β-centractin was found to be considerably lower either in DCs pulsed with HCCLM6 (high metastatic potential HCC cell line) lysates, accompanied by down-regulation of CD86 molecule and impaired allostimulatory capacity, than those of DCs pulsed with lysates from HCC cell lines with low or without metastatic potential or in DCs pulsed with lysates from HCC with invasiveness than those without invasiveness.

Conclusions

The down-regulation of β-centractin in DCs pulsed with high metastatic potential HCC lysates might associate with DCs dysfunction and HCC invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

DCs:

Dendritic cell

PBMCs:

Peripheral blood mononuclear cells

AFP:

Alpha-fetoprotein

APC:

Antigen presenting cell

TCR:

T-cell receptor

References

  • Al-Alwan MM, Rowden G, Lee TD, West KA (2001) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166:1452–1456

    PubMed  CAS  Google Scholar 

  • Al-Alwan MM, Liwski RS, Haeryfar SM, Baldridge WH, Hoskin DW, Rowden G, West KA (2003) Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol 171:4479–4483

    PubMed  CAS  Google Scholar 

  • Aspengren S, Wallin M (2004) A role for spectrin in dynactin-dependent melanosome transport in xenopus laevis melanophores. Pigment Cell Res 17:295–301

    Article  PubMed  CAS  Google Scholar 

  • Andrews DM, Andoniou CE, Scalzo AA, van Dommelen SL, Wallace ME, Smyth MJ, Degli-Esposti MA (2005) Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol 42:547–555

    Article  PubMed  CAS  Google Scholar 

  • Bingham JB, Schroer TA (1999) Self-regulated polymerization of the actin-related protein Arp1. Curr Biol 9:223–226

    Article  PubMed  CAS  Google Scholar 

  • Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19:375–396

    Article  PubMed  CAS  Google Scholar 

  • Beckebaum S, Zhang X, Chen X, Yu Z, Frilling A, Dworacki G, Grosse-Wilde H, Broelsch CE, Gerken G, Cicinnati VR (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10:7260–7269

    Article  PubMed  CAS  Google Scholar 

  • Bohnenkamp HR, Coleman J, Burchell JM, Taylor-Papadimitriou J, Noll T (2004) Breast carcinoma cell lysate-pulsed dendritic cells cross-prime MUC1-specific CD8+ T cells identified by peptide-MHC-class-I tetramers. Cell Immunol 231:112–125

    Article  PubMed  CAS  Google Scholar 

  • Creusot RJ, Mitchison NA, Terazzini NM (2002) The immunological synapse. Mol Immunol 38:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Clark SW, Meyer DI (1992) Centractin is an actin homologue associated with the centrosome. Nature 359:246–250

    Article  PubMed  CAS  Google Scholar 

  • Clark SW, Staub O, Clark IB, Holzbaur EL, Paschal BM, Vallee RB, Meyer DI (1994) Beta-centractin: characterization and distribution of a new member of the centractin family of actin-related proteins. Mol Biol Cell 5:1301–1310

    PubMed  CAS  Google Scholar 

  • Clark IB, Meyer DI (1999) Overexpression of normal and mutant Arp1alpha (centractin) differentially affects microtubule organization during mitosis and interphase. J Cell Sci 112:3507–3518

    PubMed  CAS  Google Scholar 

  • Cuadrado-Tejedor M, Sesma MT, Gimenez-Amaya JM, Ortiz L (2005) Changes in cytoskeletal gene expression linked to MPTP-treatment in Mice. Neurobiol Dis 20:666–672

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  PubMed  CAS  Google Scholar 

  • Dustin ML, Tseng SY, Varma R, Campi G (2006) T cell-dendritic cell immunological synapses. Curr Opin Immunol 18:512–516

    Article  PubMed  CAS  Google Scholar 

  • Elsea SH, Clark IB, Juyal RC, Meyer DJ, Meyer DI, Patel PI (1999) Assignment of beta-centractin (CTRN2) to human chromosome 2 bands q11.1–>q11.2 with somatic cell hybrids and in situ hybridization. Cytogenet Cell Genet 84:48–49

    Article  PubMed  CAS  Google Scholar 

  • Eaton BA, Fetter RD, Davis GW (2002) Dynactin is necessary for synapse stabilization. Neuron 34:729–741

    Article  PubMed  CAS  Google Scholar 

  • Friedman KM, Fox BA (2004) The promising future of proteomics in cancer diagnosis and treatment. Eur J Gastroenterol Hepatol 17:701–703

    Article  Google Scholar 

  • Feng JT, Shang S, Beretta L (2006) Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene 25:3810–3817

    Article  PubMed  CAS  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  PubMed  CAS  Google Scholar 

  • Gregoire M, Ligeza-Poisson C, Juge-Morineau N, Spisek R (2003) Anti-cancer therapy using dendritic cells and apoptotic tumour cells: pre-clinical data in human mesothelioma and acute myeloid leukaemia. Vaccine 21:791–794

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  PubMed  CAS  Google Scholar 

  • Holleran EA, Tokito MK, Karki S, Holzbaur EL (1996) Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles. J Cell Biol 135:1815–1829

    Article  PubMed  CAS  Google Scholar 

  • Kiertscher SM, Luo J, Dubinett SM, Roth MD (2000) Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 164:1269–1276

    PubMed  CAS  Google Scholar 

  • Kotera Y, Shimizu K, Mule JJ (2001) Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 61:8105–8109

    PubMed  CAS  Google Scholar 

  • Lees-Miller JP, Helfman DM, Schroer TA (1992) A vertebrate actin-related protein is a component of a multisubunit complex involved in microtubule-based vesicle motility. Nature 359:244–246

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2:487–492

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, Chen J, Gao DM, Bao WH (2001) Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 7:630–636

    PubMed  CAS  Google Scholar 

  • Li Y, Tian B, Yang J, Zhao L, Wu X, Ye SL, Liu YK, Tang ZY (2004) Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 130:460–468

    Article  PubMed  CAS  Google Scholar 

  • Li MS, Ma QL, Chen Q, Liu XH, Li PF, Du GG, Li G (2005) Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World J Gastroenterol 11:2564–2569

    PubMed  CAS  Google Scholar 

  • Nagao M, Nakajima Y, Kanehiro H, Hisanaga M, Aomatsu Y, Ko S, Tatekawa Y, Ikeda N, Kanokogi H, Urizono Y, Kobayashi T, Shibaji T, Kanamura T, Ogawa S, Nakano H (2000) The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology 32:491–500

    Article  PubMed  CAS  Google Scholar 

  • Plamann M, Minke PF, Tinsley JH, Bruno KS (1994) Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol 127:139–149

    Article  PubMed  CAS  Google Scholar 

  • Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227–238

    Article  PubMed  CAS  Google Scholar 

  • Posadas EM, Simpkins F, Liotta LA, MacDonald C, Kohn EC (2005) Proteomic analysis for the early detection and rational treatment of cancer—realistic hope? Ann Oncol 16:16–22

    Article  PubMed  CAS  Google Scholar 

  • Pereira SR, Faca VM, Gomes GG, Chammas R, Fontes AM, Covas DT, Greene LJ (2005) Changes in the proteomic profile during differentiation and maturation of human monocyte-derived dendritic cells stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 and lipopolysaccharide. Proteomics 5:1186–1198

    Article  PubMed  CAS  Google Scholar 

  • Pizzo P, Viola A (2005) Lipid-based membrane microdomains in T cell activation. Curr Immunol Rev 1:7–12

    Article  CAS  Google Scholar 

  • Richards J, Le, Naour F, Hanash S, Beretta L (2002) Integrated genomic and proteomic analysis of signaling pathways in dendritic cell differentiation and maturation. Ann NY Acad Sci 975:91–100

    Article  PubMed  CAS  Google Scholar 

  • Schroer TA (1994) New insights into the interaction of cytoplasmic dynein with the actin-related protein, Arp 1. J Cell Biol 127:1–4

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Gill SR, Cooper JA, Heuse JE, Schroer TA (1994) Ultrastructural analysis of the dynactin complex:an actin-related protein is a component of a filament that resembles F-actin. J Cell Biol 126:403–412

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Turley S, Mellman I, Inaba K (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191:411–416

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 99:351–358

    Article  PubMed  CAS  Google Scholar 

  • Schnurr M, Galambos P, Scholz C, Then F, Dauer M, Endres S, Eigler A (2001) Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res 61:6445–6450

    PubMed  CAS  Google Scholar 

  • Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    Article  PubMed  CAS  Google Scholar 

  • Slingluff CL Jr, Engelhard VH, Ferrone S (2000) Peptide and dendritic cell vaccines. Clin Cancer Res 12:2342s–2345s

    Article  Google Scholar 

  • Srivastava PK (2000) Immunotherapy of human cancer: lessons from mice. Nat Immunol 1:363–366

    Article  PubMed  CAS  Google Scholar 

  • Um SH, Mulhall C, Alisa A, Ives AR, Karani J, Williams R, Bertoletti A, Behboudi S (2004) Alpha-fetoprotein impairs APC function and induces their apoptosis. J Immunol 1731:1772–1778

    Google Scholar 

  • Vallee RB, Sheetz MP (1996) Targeting of motor proteins. Science 271:1539–1544

    Article  PubMed  CAS  Google Scholar 

  • Way M, Weeds A (1990) Actin-binding proteins. Cytoskeletal ups and downs. Nature 344:292–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 30200268). We thank Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences for helping with the Proteomic analysis, and Shanghai Fudan-Yueda Bio-Tech Co. Ltd., for helping with Western blot analysis of β-centractin expression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-You Tang.

Additional information

Yong-Qiang Weng and Shuang-Jian Qiu contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, YQ., Qiu, SJ., Liu, YK. et al. Down-regulation of β-centractin might be involved in dendritic cells dysfunction and subsequent hepatocellular carcinoma immune escape: a proteomic study. J Cancer Res Clin Oncol 134, 179–186 (2008). https://doi.org/10.1007/s00432-007-0267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-007-0267-0

Keywords

Navigation