Skip to main content

Advertisement

Log in

Basic science going clinical: molecularly targeted therapy of chronic myelogenous leukemia

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Imatinib (STI571), a 2-phenylaminopyrimidine, specifically inhibits the tyrosine kinase activity of Abl, Kit, and platelet-derived growth factor receptor. Clinical trials in chronic myelogenous leukemia (CML), characterized by the constitutively active Bcr-Abl tyrosine kinase, and gastrointestinal stromal tumors, characterized by activating mutations of Kit, have shown excellent results. This success is proof of principle for the concept of molecularly targeted therapy: rational treatment based on the recognition of the causal lesion responsible for malignant growth. In this manuscript, the preclinical and clinical development of imatinib for the treatment of CML will be reviewed. Room will be given to problems and challenges that may be typical of molecularly targeted therapy in general, such as the emergence of resistance as a result of point mutations. Last, the question will be addressed, why imatinib is so successful, and whether its success might be reproducible in other malignant conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    CAS  PubMed  Google Scholar 

  2. Nowell P, Hungerford D (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497

    Google Scholar 

  3. Melo JV (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88:2375–2384

    CAS  PubMed  Google Scholar 

  4. Melo JV (1997) BCR-ABL gene variants. Baillieres Clin Haematol 10:203–222

    CAS  PubMed  Google Scholar 

  5. Al Ali HK, Leiblein S, Kovacs I, Hennig E, Niederwieser D, Deininger MW (2002) CML with an e1a3 BCR-ABL fusion: rare, benign, and a potential diagnostic pitfall. Blood 100:1092–1093

    Article  PubMed  Google Scholar 

  6. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, et al (2002) Neutrophilic chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88:2410–2414

    Google Scholar 

  7. Melo JV, Gordon DE, Cross NC, Goldman JM (1993) The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81:158–165

    CAS  PubMed  Google Scholar 

  8. Huntly BJ, Bench AJ, Delabesse E, Reid AG, Li J, Scott MA, et al (2002) Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCR expression, elevated BCR-ABL levels, or karyotypic instability. Blood 99:4547–4553

    Article  CAS  PubMed  Google Scholar 

  9. Pendergast AM (2002) The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85:51–100

    CAS  PubMed  Google Scholar 

  10. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    CAS  PubMed  Google Scholar 

  11. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA (2001) Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 97:1442–1450

    Article  CAS  PubMed  Google Scholar 

  12. Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD, et al (2000) Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96:2277–2283

    CAS  PubMed  Google Scholar 

  13. Dinulescu DM, Wood LD, Loriaux M, Shen J, Corless CL, Jauron-Mills L, et al (2003) c-Cbl is not required for leukemia induction by Bcr-Abl. Oncogene (in press)

  14. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082

    CAS  PubMed  Google Scholar 

  15. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    CAS  PubMed  Google Scholar 

  16. Huettner CS, Zhang P, Van Etten RA, Tenen DG (2000) Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24:57–60

    CAS  PubMed  Google Scholar 

  17. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340

    CAS  PubMed  Google Scholar 

  18. Sill H, Goldman JM, Cross NC (1995) Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 85:2013–2016

    CAS  PubMed  Google Scholar 

  19. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, et al (1991) p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA 88:6293–6297

    CAS  PubMed  Google Scholar 

  20. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, et al (1994) Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. Blood 84:4064–4077

    CAS  PubMed  Google Scholar 

  21. Talpaz M, Kantarjian H, Kurzrock R, Trujillo JM, Gutterman JU (1991) Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Philadelphia chromosome-positive patients. Ann Intern Med 114:532–538

    CAS  PubMed  Google Scholar 

  22. Hehlmann R, Heimpel H, Hossfeld DK, Hasford J, Kolb HJ, Loffler H, et al (1996) Randomized study of the combination of hydroxyurea and interferon alpha versus hydroxyurea monotherapy during the chronic phase of chronic myelogenous leukemia (CML Study II). The German CML Study Group. Bone Marrow Transplant 17[Suppl 3]

  23. Italian cooperative study group on CML (1994) Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. N Engl J Med 330:820–825

    PubMed  Google Scholar 

  24. Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL, Maloisel F, et al (1997) Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med 337:223–229

    CAS  PubMed  Google Scholar 

  25. Baccarani M, Rosti G, de Vivo A, Bonifazi F, Russo D, Martinelli G, et al (2002) A randomized study of interferon-alpha versus interferon-alpha and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood 99:1527–1535

    Article  CAS  PubMed  Google Scholar 

  26. Bonifazi F, de Vivo A, Rosti G, Guilhot F, Guilhot J, Trabacchi E, et al (2001) Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood 98:3074–3081

    CAS  PubMed  Google Scholar 

  27. Savage DG, Goldman JM (1997) Allografting for chronic myeloid leukemia. Curr Opin Hematol 4:369–376

    CAS  PubMed  Google Scholar 

  28. Or R, Shapira MY, Resnick I, Amar A, Ackerstein A, Samuel S, et al (2003) Nonmyeloablative allogeneic stem cell transplantation for the treatment of chronic myeloid leukemia in first chronic phase. Blood 101:441–445

    Article  CAS  PubMed  Google Scholar 

  29. Anafi M, Gazit A, Zehavi A, Ben Neriah Y, Levitzki A (1993) Tyrphostin-induced inhibition of p210bcr-abl tyrosine kinase activity induces K562 to differentiate. Blood 82:3524–3529

    CAS  PubMed  Google Scholar 

  30. Okabe M, Uehara Y, Miyagishima T, Itaya T, Tanaka M, Kuni Eda Y, et al (1992) Effect of herbimycin A, an antagonist of tyrosine kinase, on bcr/abl oncoprotein-associated cell proliferations: abrogative effect on the transformation of murine hematopoietic cells by transfection of a retroviral vector expressing oncoprotein P210bcr/abl and preferential inhibition on Ph1-positive leukemia cell growth. Blood 80:1330–1338

    CAS  PubMed  Google Scholar 

  31. Uehara Y, Murakami Y, Mizuno S, Kawai S (1988) Inhibition of transforming activity of tyrosine kinase oncogenes by herbimycin A. Virology 164:294–298

    CAS  Google Scholar 

  32. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Regenass U, et al (1995) Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc Natl Acad Sci USA 92:2558–2562

    CAS  PubMed  Google Scholar 

  33. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    CAS  PubMed  Google Scholar 

  34. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    CAS  PubMed  Google Scholar 

  35. Deininger M, Goldman JM, Lydon NB, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL positive cells. Blood 90:3691–3698

    CAS  PubMed  Google Scholar 

  36. Gambacorti-Passerini C, le Coutre P, Mologni L, Fanelli M, Bertazzoli C, Marchesi E, et al (1997) Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol Dis 23:380–394

    Article  CAS  PubMed  Google Scholar 

  37. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    CAS  PubMed  Google Scholar 

  38. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042

    CAS  PubMed  Google Scholar 

  39. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652

    CAS  PubMed  Google Scholar 

  40. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937

    Article  CAS  PubMed  Google Scholar 

  41. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  CAS  PubMed  Google Scholar 

  42. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, et al (2002) A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100:1965–1971

    Article  PubMed  Google Scholar 

  43. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  CAS  PubMed  Google Scholar 

  44. Deininger MW, O’Brien SG, Ford JM, Druker BJ (2003) Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol 21:1637–1647

    Article  PubMed  Google Scholar 

  45. Ebnoether M, Stentoft J, Ford J, Buhl L, Gratwohl A (2002) Cerebral oedema as a possible complication of treatment with imatinib. Lancet 359:1751–1752

    Article  CAS  PubMed  Google Scholar 

  46. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    CAS  PubMed  Google Scholar 

  47. Okuda K, Weisberg E, Gilliland DG, Griffin JD (2001) ARG tyrosine kinase activity is inhibited by STI571. Blood 97:2440–2448

    CAS  PubMed  Google Scholar 

  48. Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163

    CAS  PubMed  Google Scholar 

  49. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691–2700

    CAS  PubMed  Google Scholar 

  50. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896

    CAS  PubMed  Google Scholar 

  51. Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT, Miczek KA, et al (1998) Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21:1259–1272

    CAS  PubMed  Google Scholar 

  52. Marin D, Marktel S, Foot N, Bua M, Goldman JM, Apperley JF (2003) Granulocyte colony-stimulating factor reverses cytopenia and may permit cytogenetic responses in patients with chronic myeloid leukemia treated with imatinib mesylate. Haematologica 88:227–229

    CAS  PubMed  Google Scholar 

  53. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ (1994) Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269:22925–22928

    CAS  PubMed  Google Scholar 

  54. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  55. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, et al (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96:1070–1079

    CAS  PubMed  Google Scholar 

  56. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190–2196

    Article  CAS  PubMed  Google Scholar 

  57. Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C, et al (2002) Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 16:1579–1583

    Article  CAS  PubMed  Google Scholar 

  58. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, et al (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125

    Article  CAS  PubMed  Google Scholar 

  59. von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491

    Article  PubMed  Google Scholar 

  60. Al-Ali H, Heinrich MC, Lange T, Krahl R, Mueller M, Mueller C, et al (2003) High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J

  61. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, et al (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99:3472–3475

    Article  CAS  PubMed  Google Scholar 

  62. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942

    Article  CAS  PubMed  Google Scholar 

  63. Corbin AS, Rosee PL, Stoffregen EP, Druker BJ, Deininger MW (2003) Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 101:4611–4614

    Article  CAS  PubMed  Google Scholar 

  64. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai JL, Philippe N, Facon T, et al (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100:1014–1018

    Article  CAS  PubMed  Google Scholar 

  65. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL, et al (2002) Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci USA 99:10700–10705

    Article  CAS  PubMed  Google Scholar 

  66. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101:2368–2373

    Article  CAS  PubMed  Google Scholar 

  67. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L, et al (2000) Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR- ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 92:1641–1650

    CAS  PubMed  Google Scholar 

  68. Lange T, Gunther C, Kohler T, Krahl R, Musiol S, Leiblein S, et al (2003) High levels of BAX, low levels of MRP-1, and high platelets are independent predictors of response to imatinib in myeloid blast crisis of CML. Blood 101:2152–2155

    Article  CAS  PubMed  Google Scholar 

  69. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, et al (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101:690–698

    Article  CAS  PubMed  Google Scholar 

  70. Branford S, Walsh CT, Rudzki Z, Grigg A, Taylor K, Herrmann R, et al (2002) BCR-ABL kinase domain mutations in CML patients on imatinib: incidence is correlated with duration of CML and mutations in the P-loop may be indicative of a poor outcome. Blood 100:367a

    Article  Google Scholar 

  71. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325

    Article  CAS  PubMed  Google Scholar 

  72. Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R (2002) Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99:3792–3800

    Article  CAS  PubMed  Google Scholar 

  73. La Rosee P, O’Dwyer ME, Druker BJ (2002) Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia 16:1213–1219

    Article  PubMed  Google Scholar 

  74. Baccarani M, Trabacchi E, Bassi S, Bonifazi F, de Vivo A, Martinelli G, et al (2002) Results of a phase II trial testing a combination of imatinib and pegylated alpga2b interferon in Ph+ chronic myeloid leukemia in early chronic phase. The early cytogenetic response is significantly risk related. Blood 100:94a

    Google Scholar 

  75. Gardembas M, Rousselot P, Tulliez M, Vigier M, Buzyn A, Rigal-Huguet F, et al (2002) Imatinib (Gleevec) and cytarabine (Ara-C) is an effective regimen in Philadelphia (Ph)-positive chronic myelogenous leukemia (CML) chronic phase patients (pts). Blood 100:95a

    Article  Google Scholar 

  76. Cortes J, Giles F, O’Brien S, Thomas D, Garcia-Manero G, Rios MB, et al (2003) Result of high-dose imatinib mesylate in patients with Philadelphia chromosome--positive chronic myeloid leukemia after failure of interferon-{alpha}. Blood 102:83–86

    Article  CAS  PubMed  Google Scholar 

  77. Kantarjian HM, Talpaz M, O’Brien S, Giles F, Garcia-Manero G, Faderl S, et al (2003) Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 101:473–475

    Article  CAS  PubMed  Google Scholar 

  78. Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T (2002) Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 21:5868–5876

    Article  CAS  PubMed  Google Scholar 

  79. Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P, et al (2002) Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 62:188–199

    CAS  PubMed  Google Scholar 

  80. Hoover RR, Mahon FX, Melo JV, Daley GQ (2002) Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 100:1068–1071

    Article  CAS  PubMed  Google Scholar 

  81. Yu C, Krystal G, Dent P, Grant S (2002) Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res 8:2976–2984

    CAS  PubMed  Google Scholar 

  82. La Rosee P, Johnson K, Corbin A, Stoffregen E, Moseson E, Melo JV, et al (2003) In-vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib resistant Bcr-Abl positive cell lines. (submitted)

  83. Porosnicu M, Nimmanapalli R, Nguyen D, Worthington E, Perkins C, Bhalla KN (2001) Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Brc-Abl-positive acute leukemia cells. Leukemia 15:772–778

    Article  CAS  PubMed  Google Scholar 

  84. Mauro MJ, Deininger MWN, O’Dwyer ME, Maziarz RT, Walker T, Kurilik G, et al (2003) Phase I/II study of arsenic trioxide (trisemox) in combination with imatinib mesylate (Gleevec, STI571) in patients with Gleevec-resistant chronic myelogenous leukemia in chronic phase. Blood 100:781a

    Google Scholar 

  85. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL (2002) BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100:3041–3044

    Article  CAS  PubMed  Google Scholar 

  86. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, et al (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62:4236–4243

    CAS  PubMed  Google Scholar 

  87. La Rosee P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ (2002) Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 62:7149–7153

    PubMed  Google Scholar 

  88. Heinrich MC, Blanke CD, Druker BJ, Corless CL (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20:1692–1703

    Article  CAS  PubMed  Google Scholar 

  89. Blanke CD, Eisenberg BL, Heinrich MC (2001) Gastrointestinal stromal tumors. Curr Treat Options Oncol 2:485–491

    Google Scholar 

  90. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    CAS  PubMed  Google Scholar 

  91. Apperley J, Schultheis B, Chase A, Steer EJ, Bain B, Dimitrijevic S, et al (2001) Chronic myeloproliferative diseases with t(5;12) and a PDGFRB fusion gene: complete cytogenetic remission on STI571. Blood 98:726a

    Google Scholar 

  92. Magnusson MK, Meade KE, Nakamura R, Barrett J, Dunbar CE (2002) Activity of STI571 in chronic myelomonocytic leukemia with a platelet- derived growth factor beta receptor fusion oncogene. Blood 100:1088–1091

    Article  CAS  PubMed  Google Scholar 

  93. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH (2002) Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 359:1577–1578

    CAS  PubMed  Google Scholar 

  94. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Paul La Rosée, University of Mannheim, Germany for providing Fig. 5 of this manuscript and to Chris Koontz, OHSU, for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. N. Deininger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deininger, M.W.N. Basic science going clinical: molecularly targeted therapy of chronic myelogenous leukemia. J Cancer Res Clin Oncol 130, 59–72 (2004). https://doi.org/10.1007/s00432-003-0502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-003-0502-2

Keyword

Navigation