Skip to main content

Advertisement

Log in

Bisphenol A and its effects on the systemic organs of children

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children’s health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.

Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans.

What is known:

• Very limited reviews are available on how BPA adversely affects children’s health.

• Previous papers mainly covered two systems in children.

What is new:

• Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives.

• Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

Abbreviations

AR:

Androgen receptor

AGD:

Anogenital distance

BMI:

Body mass index

BPA:

Bisphenol A

BPAF:

Bisphenol AF

BPF:

Bisphenol F

BPS:

Bisphenol S

CVD:

Cardiovascular disease

EDC:

Endocrine-disrupting chemical

EGFR:

Epidermal growth factor receptor

ER:

Oestrogen receptor

FXR:

Farnesoid X receptor

GnRH:

Gonadotropin-releasing hormone

GPER:

G-protein-coupled receptor

HPA:

Hypothalamic–pituitary–adrenal

HRV:

Heart rate variability

LOAEL:

Lowest observed adverse effect level

Maxi-K:

Large conductance calcium-activated channel

miRNA:

MicroRNA

PCOS:

Polycystic ovary syndrome

PND:

Postnatal day

SRC:

Steroid receptor coactivator

TR:

Thyroid receptor

TSH:

Thyroid-stimulating hormone

T2D:

Type 2 diabetes mellitus

VGSC:

Voltage-gated sodium channel

References

  1. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148:116–127

    Article  CAS  PubMed  Google Scholar 

  2. Bittner GD, Denison MS, Yang CZ, Stoner MA, He G (2014) Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins. Environ Health 13:103

  3. Ahmad R, Rah B, Bastola D, Dhawan P, Singh AB (2017) Obesity-induces organ and tissue specific tight junction restructuring and barrier deregulation by claudin switching. Sci Rep 7:5125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW (2015) Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13:1559325815598308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jalal N, Surendranath AR, Pathak JL, Yu S, Chung CY (2018) Bisphenol A (BPA) the mighty and the mutagenic. Toxicol Rep 5:76–84

    Article  CAS  PubMed  Google Scholar 

  6. Nachman RM, Hartle JC, Lees PS, Groopman JD (2014) Early life metabolism of bisphenol A: a systematic review of the literature. Curr Environ Health Rep 1:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect 116:39–44

    Article  CAS  PubMed  Google Scholar 

  8. Bushnik T, Haines D, Levallois P, Levesque J, Van Oostdam J, Viau C (2010) Lead and bisphenol A concentrations in the Canadian population. Health Rep 21:7–18

    PubMed  Google Scholar 

  9. Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127:204–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menard S, Guzylack-Piriou L, Lencina C, Leveque M, Naturel M, Sekkal S, Harkat C, Gaultier E, Olier M, Garcia-Villar R, Theodorou V, Houdeau E (2014) Perinatal exposure to a low dose of bisphenol A impaired systemic cellular immune response and predisposes young rats to intestinal parasitic infection. PLoS One 9:e112752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liang Q, Gao X, Chen Y, Hong K, Wang HS (2014) Cellular mechanism of the nonmonotonic dose response of bisphenol A in rat cardiac myocytes. Environ Health Perspect 122:601–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Miao M, Yuan W, Yang F, Liang H, Zhou Z, Li R, Gao E, Li DK (2015) Associations between bisphenol A exposure and reproductive hormones among female workers. Int J Environ Res Public Health 12:13240–13250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, Huttner K, Hauser R (2009) Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect 117:639–644

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J, Jiang L, Liu Y, Qian W, Liu J, Zhou J, Gao R, Xiao H, Wang J (2015) MAPK and NF-kappaB pathways are involved in bisphenol A-induced TNF-alpha and IL-6 production in BV2 microglial cells. Inflammation 38:637–648

    Article  CAS  PubMed  Google Scholar 

  15. Yang M, Qiu W, Chen B, Chen J, Liu S, Wu M, Wang KJ (2015) The in vitro immune modulatory effect of bisphenol A on fish macrophages via estrogen receptor alpha and nuclear factor-kappaB signaling. Environ Sci Technol 49:1888–1895

    Article  CAS  PubMed  Google Scholar 

  16. Susiarjo M, Xin F, Stefaniak M, Mesaros C, Simmons RA, Bartolomei MS (2017) Bile acids and tryptophan metabolism are novel pathways involved in metabolic abnormalities in BPA-exposed pregnant mice and male offspring. Endocrinology 158:2533–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sedes L, Desdoits-Lethimonier C, Rouaisnel B, Holota H, Thirouard L, Lesne L, Damon-Soubeyrand C, Martinot E, Saru JP, Mazaud-Guittot S, Caira F, Beaudoin C, Jegou B, Volle DH (2018) Crosstalk between BPA and FXRalpha signaling pathways lead to alterations of undifferentiated germ cell homeostasis and male fertility disorders. Stem Cell Rep 11:944–958

    Article  CAS  Google Scholar 

  18. Watson CS, Bulayeva NN, Wozniak AL, Alyea RA (2007) Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 72:124–134

    Article  CAS  PubMed  Google Scholar 

  19. Inagaki T, Smith N, Lee EK, Ramakrishnan S (2016) Low dose exposure to bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka. Neurotoxicology 52:188–197

    Article  CAS  PubMed  Google Scholar 

  20. Oehlmann J, Schulte-Oehlmann U, Bachmann J, Oetken M, Lutz I, Kloas W, Ternes TA (2006) Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: Prosobranchia) at environmentally relevant concentrations. Environ Health Perspect 114(Suppl 1):127–133

    Article  PubMed  Google Scholar 

  21. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87:5185–5190

    Article  CAS  PubMed  Google Scholar 

  22. Teng C, Goodwin B, Shockley K, Xia M, Huang R, Norris J, Merrick BA, Jetten AM, Austin CP, Tice RR (2013) Bisphenol A affects androgen receptor function via multiple mechanisms. Chem Biol Interact 203:556–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fitzgerald AC, Peyton C, Dong J, Thomas P (2015) Bisphenol A and related alkylphenols exert nongenomic estrogenic actions through a G protein-coupled estrogen receptor 1 (Gper)/epidermal growth factor receptor (Egfr) pathway to inhibit meiotic maturation of zebrafish oocytes. Biol Reprod 93:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Asano S, Tune JD, Dick GM (2010) Bisphenol A activates Maxi-K (K (Ca)1.1) channels in coronary smooth muscle. Br J Pharmacol 160:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez-Pinna J, Marroqui L, Hmadcha A, Lopez-Beas J, Soriano S, Villar-Pazos S, Alonso-Magdalena P, Dos Santos RS, Quesada I, Martin F, Soria B, Gustafsson JA, Nadal A (2019) Oestrogen receptor beta mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia 62:1667–1680

    Article  CAS  PubMed  Google Scholar 

  26. Mizuta K, Fujita T, Yamagata H, Kumamoto E (2017) Bisphenol A inhibits compound action potentials in the frog sciatic nerve in a manner independent of estrogen receptors. Biochem Biophys Rep 10:145–151

    PubMed  PubMed Central  Google Scholar 

  27. Huang B, Ning S, Zhang Q, Chen A, Jiang C, Cui Y, Hu J, Li H, Fan G, Qin L, Liu J (2017) Bisphenol A represses dopaminergic neuron differentiation from human embryonic stem cells through downregulating the expression of insulin-like growth factor 1. Mol Neurobiol 54:3798–3812

    Article  CAS  PubMed  Google Scholar 

  28. Chapalamadugu KC, Vandevoort CA, Settles ML, Robison BD, Murdoch GK (2014) Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 9:e89096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Patel BB, Raad M, Sebag IA, Chalifour LE (2013) Lifelong exposure to bisphenol a alters cardiac structure/function, protein expression, and DNA methylation in adult mice. Toxicol Sci 133:174–185

    Article  CAS  PubMed  Google Scholar 

  30. Lee J, Choi K, Park J, Moon HB, Choi G, Lee JJ, Suh E, Kim HJ, Eun SH, Kim GH, Cho GJ, Kim SK, Kim S, Kim SY, Kim S, Eom S, Choi S, Kim YD, Kim S (2018) Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother-neonate pairs. Sci Total Environ 626:1494–1501

    Article  CAS  PubMed  Google Scholar 

  31. Sun Y, Nakashima MN, Takahashi M, Kuroda N, Nakashima K (2002) Determination of bisphenol A in rat brain by microdialysis and column switching high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 16:319–326

    Article  CAS  PubMed  Google Scholar 

  32. Nakajima Y, Goldblum RM, Midoro-Horiuti T (2012) Fetal exposure to bisphenol A as a risk factor for the development of childhood asthma: an animal model study. Environ Health 11:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanlidag B, Dalkan C, Yetkin O, Bahceciler NN (2018) Evaluation of dose dependent maternal exposure to bisphenol A on thyroid functions in newborns. J Clin Med 7(6):119

  34. Romano ME, Webster GM, Vuong AM, Thomas Zoeller R, Chen A, Hoofnagle AN, Calafat AM, Karagas MR, Yolton K, Lanphear BP, Braun JM (2015) Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME study. Environ Res 138:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen F, Zhou L, Bai Y, Zhou R, Chen L (2015) Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A. J Biomed Res 29:250–258

    PubMed  Google Scholar 

  36. Giesbrecht GF, Ejaredar M, Liu J, Thomas J, Letourneau N, Campbell T, Martin JW, Dewey D, Team APS (2017) Prenatal bisphenol a exposure and dysregulation of infant hypothalamic-pituitary-adrenal axis function: findings from the APrON cohort study. Environ Health 16:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hewlett M, Chow E, Aschengrau A, Mahalingaiah S (2017) Prenatal exposure to endocrine disruptors: a developmental etiology for polycystic ovary syndrome. Reprod Sci 24:19–27

    Article  CAS  PubMed  Google Scholar 

  38. Gambineri A, Patton L, Altieri P, Pagotto U, Pizzi C, Manzoli L, Pasquali R (2012) Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes 61:2369–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tarantino G, Valentino R, Di Somma C, D'Esposito V, Passaretti F, Pizza G, Brancato V, Orio F, Formisano P, Colao A, Savastano S (2013) Bisphenol A in polycystic ovary syndrome and its association with liver-spleen axis. Clin Endocrinol 78:447–453

    Article  CAS  Google Scholar 

  40. Amin MM, Ebrahim K, Hashemi M, Shoshtari-Yeganeh B, Rafiei N, Mansourian M, Kelishadi R (2019) Association of exposure to Bisphenol A with obesity and cardiometabolic risk factors in children and adolescents. Int J Environ Health Res 29:94–106

    Article  CAS  PubMed  Google Scholar 

  41. Vafeiadi M, Roumeliotaki T, Myridakis A, Chalkiadaki G, Fthenou E, Dermitzaki E, Karachaliou M, Sarri K, Vassilaki M, Stephanou EG, Kogevinas M, Chatzi L (2016) Association of early life exposure to bisphenol A with obesity and cardiometabolic traits in childhood. Environ Res 146:379–387

    Article  CAS  PubMed  Google Scholar 

  42. Mansouri V, Ebrahimpour K, Poursafa P, Riahi R, Shoshtari-Yeganeh B, Hystad P, Kelishadi R (2019) Exposure to phthalates and bisphenol A is associated with higher risk of cardiometabolic impairment in normal weight children. Environ Sci Pollut Res Int 26:18604–18614

    Article  CAS  PubMed  Google Scholar 

  43. Santos-Silva AP, de Moura EG, Pinheiro CR, Oliveira E, Lisboa PC (2018) Short-term and long-term effects of bisphenol A (BPA) exposure during breastfeeding on the biochemical and endocrine profiles in rats. Horm Metab Res 50:491–503

    Article  CAS  PubMed  Google Scholar 

  44. Esteban J, Serrano-Macia M, Sanchez-Perez I, Alonso-Magdalena P, Pellin MC, Garcia-Arevalo M, Nadal A, Barril J (2019) In utero exposure to bisphenol-A disrupts key elements of retinoid system in male mice offspring. Food Chem Toxicol 126:142–151

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Arevalo M, Alonso-Magdalena P, Servitja JM, Boronat-Belda T, Merino B, Villar-Pazos S, Medina-Gomez G, Novials A, Quesada I, Nadal A (2016) Maternal exposure to bisphenol-A during pregnancy increases pancreatic beta-cell growth during early life in male mice offspring. Endocrinology 157:4158–4171

    Article  CAS  PubMed  Google Scholar 

  46. Manukyan L, Dunder L, Lind PM, Bergsten P, Lejonklou MH (2019) Developmental exposure to a very low dose of bisphenol A induces persistent islet insulin hypersecretion in Fischer 344 rat offspring. Environ Res 172:127–136

    Article  CAS  PubMed  Google Scholar 

  47. Brannick KE, Craig ZR, Himes AD, Peretz JR, Wang W, Flaws JA, Raetzman LT (2012) Prenatal exposure to low doses of bisphenol A increases pituitary proliferation and gonadotroph number in female mice offspring at birth. Biol Reprod 87:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eckstrum KS, Edwards W, Banerjee A, Wang W, Flaws JA, Katzenellenbogen JA, Kim SH, Raetzman LT (2018) Effects of exposure to the endocrine-disrupting chemical bisphenol A during critical windows of murine pituitary development. Endocrinology 159:119–131

    Article  CAS  PubMed  Google Scholar 

  49. Boucher JG, Boudreau A, Ahmed S, Atlas E (2015) In vitro effects of bisphenol A beta-D-glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. Environ Health Perspect 123:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Junge KM, Leppert B, Jahreis S, Wissenbach DK, Feltens R, Grutzmann K, Thurmann L, Bauer T, Ishaque N, Schick M, Bewerunge-Hudler M, Roder S, Bauer M, Schulz A, Borte M, Landgraf K, Korner A, Kiess W, von Bergen M, Stangl GI, Trump S, Eils R, Polte T, Lehmann I (2018) MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin Epigenetics 10:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee S, Kim C, Youn H, Choi K (2017) Thyroid hormone disrupting potentials of bisphenol A and its analogues - in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicol in Vitro 40:297–304

    Article  CAS  PubMed  Google Scholar 

  52. Lee S, Kim C, Shin H, Kho Y, Choi K (2019) Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. Chemosphere 221:115–123

    Article  CAS  PubMed  Google Scholar 

  53. Gorvin CM (2015) The prolactin receptor: diverse and emerging roles in pathophysiology. J Clin Transl Endocrinol 2:85–91

    PubMed  PubMed Central  Google Scholar 

  54. Sunman B, Yurdakok K, Kocer-Gumusel B, Ozyuncu O, Akbiyik F, Balci A, Ozkemahli G, Erkekoglu P, Yurdakok M (2019) Prenatal bisphenol a and phthalate exposure are risk factors for male reproductive system development and cord blood sex hormone levels. Reprod Toxicol 87:146–155

    Article  CAS  PubMed  Google Scholar 

  55. Barrett ES, Sathyanarayana S, Mbowe O, Thurston SW, Redmon JB, Nguyen RHN, Swan SH (2017) First-trimester urinary bisphenol A concentration in relation to anogenital distance, an androgen-sensitive measure of reproductive development, in infant girls. Environ Health Perspect 125:077008

    Article  PubMed  PubMed Central  Google Scholar 

  56. Miao M, Yuan W, He Y, Zhou Z, Wang J, Gao E, Li G, Li DK (2011) In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res A Clin Mol Teratol 91:867–872

    Article  CAS  PubMed  Google Scholar 

  57. Wang Z, Liang H, Tu X, Yuan W, Zhou Z, Jin L, Miao M, Li DK (2019) Bisphenol A and pubertal height growth in school-aged children. J Expo Sci Environ Epidemiol 29:109–117

    Article  CAS  PubMed  Google Scholar 

  58. Berger K, Eskenazi B, Kogut K, Parra K, Lustig RH, Greenspan LC, Holland N, Calafat AM, Ye X, Harley KG (2018) Association of prenatal urinary concentrations of phthalates and bisphenol A and pubertal timing in boys and girls. Environ Health Perspect 126:97004

    Article  CAS  PubMed  Google Scholar 

  59. Watkins DJ, Sanchez BN, Tellez-Rojo MM, Lee JM, Mercado-Garcia A, Blank-Goldenberg C, Peterson KE, Meeker JD (2017) Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ Res 159:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hong J, Chen F, Wang X, Bai Y, Zhou R, Li Y, Chen L (2016) Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol Cell Endocrinol 427:101–111

    Article  CAS  PubMed  Google Scholar 

  61. Ullah A, Pirzada M, Jahan S, Ullah H, Razak S, Rauf N, Khan MJ, Mahboob SZ (2019) Prenatal BPA and its analogs BPB, BPF, and BPS exposure and reproductive axis function in the male offspring of Sprague Dawley rats. Hum Exp Toxicol 38:1344–1365

    Article  CAS  PubMed  Google Scholar 

  62. Zhang GL, Zhang XF, Feng YM, Li L, Huynh E, Sun XF, Sun ZY, Shen W (2013) Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reprod Fertil Dev 25:847–859

    Article  CAS  PubMed  Google Scholar 

  63. Salian-Mehta S, Doshi T, Vanage G (2014) Exposure of neonatal rats to the endocrine disrupter bisphenol A affects ontogenic expression pattern of testicular steroid receptors and their coregulators. J Appl Toxicol 34:307–318

    Article  CAS  PubMed  Google Scholar 

  64. Shi M, Sekulovski N, MacLean JA 2nd, Hayashi K (2018) Prenatal exposure to bisphenol A analogues on male reproductive functions in mice. Toxicol Sci 163:620–631

    Article  CAS  PubMed  Google Scholar 

  65. Ahsan N, Ullah H, Ullah W, Jahan S (2018) Comparative effects of bisphenol S and bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere 197:336–343

    Article  CAS  PubMed  Google Scholar 

  66. Schonfelder G, Friedrich K, Paul M, Chahoud I (2004) Developmental effects of prenatal exposure to bisphenol a on the uterus of rat offspring. Neoplasia 6:584–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Newbold RR, Jefferson WN, Padilla-Banks E (2007) Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol 24:253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma S, Shi W, Wang X, Song P, Zhong X (2017) Bisphenol A exposure during pregnancy alters the mortality and levels of reproductive hormones and genes in offspring mice. Biomed Res Int 2017:3585809

    PubMed  PubMed Central  Google Scholar 

  69. Suzuki ASA, Uchida K, Sato T, Ohta Y, Katsu Y, Watanabe H, Iguchi T (2002) Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice. Reprod Toxicol 16:107–116

    Article  CAS  PubMed  Google Scholar 

  70. Xi W, Wan HT, Zhao YG, Wong MH, Giesy JP, Wong CK (2011) Effects of perinatal exposure to bisphenol A and di(2-ethylhexyl)-phthalate on gonadal development of male mice. Environ Sci Pollut Res Int 19:2515–2527

    Article  PubMed  CAS  Google Scholar 

  71. Calhoun KC, Padilla-Banks E, Jefferson WN, Liu L, Gerrish KE, Young SL, Wood CE, Hunt PA, Vandevoort CA, Williams CJ (2014) Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus. PLoS One 9:e85894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li Q, Davila J, Kannan A, Flaws JA, Bagchi MK, Bagchi IC (2016) Chronic exposure to bisphenol A affects uterine function during early pregnancy in mice. Endocrinology 157:1764–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ding ZM, Jiao XF, Wu D, Zhang JY, Chen F, Wang YS, Huang CJ, Zhang SX, Li X, Huo LJ (2017) Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem Biol Interact 278:222–229

    Article  CAS  PubMed  Google Scholar 

  74. Zhu X, Tian GG, Yu B, Yang Y, Wu J (2018) Effects of bisphenol A on ovarian follicular development and female germline stem cells. Arch Toxicol 92:1581–1591

    Article  CAS  PubMed  Google Scholar 

  75. Ganesan S, Keating AF (2016) Bisphenol A-induced ovotoxicity involves DNA damage induction to which the ovary mounts a protective response indicated by increased expression of proteins involved in DNA repair and xenobiotic biotransformation. Toxicol Sci 152:169–180

    Article  CAS  PubMed  Google Scholar 

  76. Barbonetti A, Castellini C, Di Giammarco N, Santilli G, Francavilla S, Francavilla F (2016) In vitro exposure of human spermatozoa to bisphenol A induces pro-oxidative/apoptotic mitochondrial dysfunction. Reprod Toxicol 66:61–67

    Article  CAS  PubMed  Google Scholar 

  77. Rahman MS, Kang KH, Arifuzzaman S, Pang WK, Ryu DY, Song WH, Park YJ, Pang MG (2019) Effect of antioxidants on BPA-induced stress on sperm function in a mouse model. Sci Rep 9:10584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Bouskine A, Nebout M, Brucker-Davis F, Benahmed M, Fenichel P (2009) Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. Environ Health Perspect 117:1053–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xin F, Fischer E, Krapp C, Krizman EN, Lan Y, Mesaros C, Snyder NW, Bansal A, Robinson MB, Simmons RA, Bartolomei MS (2018) Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction. Horm Behav 102:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, Lanphear BP (2009) Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 117:1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, Lanphear BP (2011) Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128:873–882

    Article  PubMed  PubMed Central  Google Scholar 

  82. Casas M, Forns J, Martinez D, Avella-Garcia C, Valvi D, Ballesteros-Gomez A, Luque N, Rubio S, Julvez J, Sunyer J, Vrijheid M (2015) Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environ Res 142:671–679

    Article  CAS  PubMed  Google Scholar 

  83. Kondolot M, Ozmert EN, Asci A, Erkekoglu P, Oztop DB, Gumus H, Kocer-Gumusel B, Yurdakok K (2016) Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. Environ Toxicol Pharmacol 43:149–158

    Article  CAS  PubMed  Google Scholar 

  84. Metwally FM, Rashad H, Zeidan HM, Hashish AF (2020) Impact of bisphenol A on gonadotropic hormone levels in children with autism spectrum disorders. Indian J Clin Biochem 35:205–210

    Article  CAS  PubMed  Google Scholar 

  85. Thongkorn S, Kanlayaprasit S, Jindatip D, Tencomnao T, Hu VW, Sarachana T (2019) Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Sci Rep 9:3038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Xu X, Fan S, Guo Y, Tan R, Zhang J, Zhang W, Pan BX, Kato N (2019) The effects of perinatal bisphenol A exposure on thyroid hormone homeostasis and glucose metabolism in the prefrontal cortex and hippocampus of rats. Brain Behav 9:e01225

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kinch CD, Ibhazehiebo K, Jeong JH, Habibi HR, Kurrasch DM (2015) Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc Natl Acad Sci U S A 112:1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yin N, Yao X, Qin Z, Wang YL, Faiola F (2015) Assessment of bisphenol A (BPA) neurotoxicity in vitro with mouse embryonic stem cells. J Environ Sci (China) 36:181–187

    Article  CAS  Google Scholar 

  89. Wang H, Chang L, Aguilar JS, Dong S, Hong Y (2019) Bisphenol-A exposure induced neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Environ Int 127:324–332

    Article  CAS  PubMed  Google Scholar 

  90. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ, Goldman J, Sulzer D (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matt L, Kim K, Hergarden AC, Patriarchi T, Malik ZA, Park DK, Chowdhury D, Buonarati OR, Henderson PB, Gokcek Sarac C, Zhang Y, Mohapatra D, Horne MC, Ames JB, Hell JW (2018) Alpha-actinin anchors PSD-95 at postsynaptic sites. Neuron 97:1094–1109 e1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kiselycznyk C, Zhang X, Huganir RL, Holmes A, Svenningsson P (2013) Reduced phosphorylation of GluA1 subunits relates to anxiety-like behaviours in mice. Int J Neuropsychopharmacol 16:919–924

    Article  CAS  PubMed  Google Scholar 

  93. Fujiwara Y, Miyazaki W, Koibuchi N, Katoh T (2018) The effects of low-dose bisphenol A and bisphenol F on neural differentiation of a fetal brain-derived neural progenitor cell line. Front Endocrinol (Lausanne) 9:24

    Article  Google Scholar 

  94. Gao X, Wang HS (2014) Impact of bisphenol a on the cardiovascular system - epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health 11:8399–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS (2010) Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One 5:e8673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Melzer D, Osborne NJ, Henley WE, Cipelli R, Young A, Money C, McCormack P, Luben R, Khaw KT, Wareham NJ, Galloway TS (2012) Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 125:1482–1490

    Article  CAS  PubMed  Google Scholar 

  97. Shankar A, Teppala S, Sabanayagam C (2012) Bisphenol A and peripheral arterial disease: results from the NHANES. Environ Health Perspect 120:1297–1300

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bae S, Kim JH, Lim YH, Park HY, Hong YC (2012) Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension 60:786–793

    Article  CAS  PubMed  Google Scholar 

  99. Kataria A, Levine D, Wertenteil S, Vento S, Xue J, Rajendiran K, Kannan K, Thurman JM, Morrison D, Brody R, Urbina E, Attina T, Trasande L, Trachtman H (2017) Exposure to bisphenols and phthalates and association with oxidant stress, insulin resistance, and endothelial dysfunction in children. Pediatr Res 81:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang T, Zhao N, Long S, Ge L, Wang A, Sun H, Ran X, Zou Z, Wang J, Su Y (2016) Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5. Biochim Biophys Acta 1862:1443–1452

    Article  CAS  PubMed  Google Scholar 

  101. Zhang L, Zhang X, Wang X, He M, Qiao S (2019) MicroRNA-224 promotes tumorigenesis through downregulation of caspase-9 in triple-negative breast cancer. Dis Markers 2019:7378967

    PubMed  PubMed Central  Google Scholar 

  102. Sui Y, Park SH, Wang F, Zhou C (2018) Perinatal bisphenol A exposure increases atherosclerosis in adult male PXR-humanized mice. Endocrinology 159:1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ramadan M, Sherman M, Jaimes R 3rd, Chaluvadi A, Swift L, Posnack NG (2018) Disruption of neonatal cardiomyocyte physiology following exposure to bisphenol-a. Sci Rep 8:7356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rasdi ZHNI, Sheikh Abdul Kadir SH, Ab Rahim S, Siran R, Othman MHD, Kamaludin R, Abdul Hamid Hasani N, Syed Ahmad Fuad SB (2018) Effects of bisphenol A on neonatal cardiomyocytes beating rate and morphology. Jurnal Teknologi 80:141–147

    Article  Google Scholar 

  105. Posnack NG, Brooks D, Chandra A, Jaimes R, Sarvazyan N, Kay M (2015) Physiological response of cardiac tissue to bisphenol A: alterations in ventricular pressure and contractility. Am J Physiol Heart Circ Physiol 309:H267–H275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pant J, Ranjan P, Deshpande SB (2011) Bisphenol A decreases atrial contractility involving NO-dependent G-cyclase signaling pathway. J Appl Toxicol 31:698–702

    Article  CAS  PubMed  Google Scholar 

  107. Moreman J, Takesono A, Trznadel M, Winter MJ, Perry A, Wood ME, Rogers NJ, Kudoh T, Tyler CR (2018) Estrogenic mechanisms and cardiac responses following early life exposure to bisphenol A (BPA) and its metabolite 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish. Environ Sci Technol 52:6656–6665

    Article  CAS  PubMed  Google Scholar 

  108. Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M (2014) Endocrine disruptors differently influence estrogen receptor beta and androgen receptor in male and female rat VSMC. J Cell Physiol 229:1061–1068

    Article  CAS  PubMed  Google Scholar 

  109. Li G, Chen YF, Greene GL, Oparil S, Thompson JA (1999) Estrogen inhibits vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro. Circulation 100:1639–1645

    Article  CAS  PubMed  Google Scholar 

  110. Chen SJ, Li H, Durand J, Oparil S, Chen YF (1996) Estrogen reduces myointimal proliferation after balloon injury of rat carotid artery. Circulation 93:577–584

    Article  CAS  PubMed  Google Scholar 

  111. Michiels C (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164:1875–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Serebrovskaya TV, Xi L (2015) Intermittent hypoxia in childhood: the harmful consequences versus potential benefits of therapeutic uses. Front Pediatr 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kubo T, Maezawa N, Osada M, Katsumura S, Funae Y, Imaoka S (2004) Bisphenol A, an environmental endocrine-disrupting chemical, inhibits hypoxic response via degradation of hypoxia-inducible factor 1alpha (HIF-1alpha): structural requirement of bisphenol A for degradation of HIF-1alpha. Biochem Biophys Res Commun 318:1006–1011

    Article  CAS  PubMed  Google Scholar 

  114. Cypher AD, Ickes JR, Bagatto B (2015) Bisphenol A alters the cardiovascular response to hypoxia in Danio rerio embryos. Comp Biochem Physiol C Toxicol Pharmacol 174-175:39–45

    Article  CAS  PubMed  Google Scholar 

  115. Moon MK (2019) Concern about the safety of bisphenol A substitutes. Diabetes Metab J 43:46–48

    Article  PubMed  PubMed Central  Google Scholar 

  116. Naderi M, Wong MY, Gholami F (2014) Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol 148:195–203

    Article  CAS  PubMed  Google Scholar 

  117. Ji K, Hong S, Kho Y, Choi K (2013) Effects of bisphenol s exposure on endocrine functions and reproduction of zebrafish. Environ Sci Technol 47:8793–8800

    Article  CAS  PubMed  Google Scholar 

  118. Liu B, Lehmler HJ, Sun Y, Xu G, Sun Q, Snetselaar LG, Wallace RB, Bao W (2019) Association of bisphenol A and its substitutes, bisphenol F and bisphenol S, with obesity in United States children and adolescents. Diabetes Metab J 43:59–75

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rosenfeld CS (2017) Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 47:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Inadera H (2015) Neurological effects of bisphenol A and its analogues. Int J Med Sci 12:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kojima H, Takeuchi S, Sanoh S, Okuda K, Kitamura S, Uramaru N, Sugihara K, Yoshinari K (2019) Profiling of bisphenol A and eight its analogues on transcriptional activity via human nuclear receptors. Toxicology 413:48–55

    Article  CAS  PubMed  Google Scholar 

  122. Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K (2012) Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol 46:9138–9145

    Article  CAS  PubMed  Google Scholar 

  123. Zhou X, Kramer JP, Calafat AM, Ye X (2014) Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine. J Chromatogr B Anal Technol Biomed Life Sci 944:152–156

    Article  CAS  Google Scholar 

  124. Rochester JR, Bolden AL (2015) Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang N, Scarsella JB, Hartman TG (2020) Identification and quantitation studies of migrants from BPA alternative food-contact metal can coatings. Polymers (Basel) 12(12):2846

  126. Maffini MV, Canatsey RD (2020) An expanded toxicological profile of tetramethyl bisphenol F (TMBPF), a precursor for a new food-contact metal packaging coating. Food Chem Toxicol 135:110889

    Article  CAS  PubMed  Google Scholar 

  127. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK (2013) Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8:e55387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mahalingam S, Ther L, Gao L, Wang W, Ziv-Gal A, Flaws JA (2017) The effects of in utero bisphenol A exposure on ovarian follicle numbers and steroidogenesis in the F1 and F2 generations of mice. Reprod Toxicol 74:150–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rivera OE, Varayoud J, Rodriguez HA, Santamaria CG, Bosquiazzo VL, Osti M, Belmonte NM, Munoz-de-Toro M, Luque EH (2015) Neonatal exposure to xenoestrogens impairs the ovarian response to gonadotropin treatment in lambs. Reproduction 149:645–655

    Article  CAS  PubMed  Google Scholar 

  130. Koneva LA, Vyas AK, McEachin RC, Puttabyatappa M, Wang HS, Sartor MA, Padmanabhan V (2017) Developmental programming: interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. Environ Mol Mutagen 58:4–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. MohanKumar SM, Rajendran TD, Vyas AK, Hoang V, Asirvatham-Jeyaraj N, Veiga-Lopez A, Olivier NB, Padmanabhan V, MohanKumar PS (2017) Effects of prenatal bisphenol-A exposure and postnatal overfeeding on cardiovascular function in female sheep. J Dev Orig Health Dis 8:65–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the institutional support given by the Universiti Teknologi MARA (UiTM).

Funding

This review paper was funded by the Fundamental Research Grant Scheme from the Ministry of Higher Education, Malaysia, grant number 600-IRMI/FRGS 5/3(387/2019).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written and edited by Sarah Zulkifli and Amirah Abdul Rahman and conceptualised and edited by Siti Hamimah Sheikh Abdul Kadir and Noor Shafina Mohd Nor. All authors worked together in improving the manuscript and gave approval of the submitted and published versions.

Corresponding author

Correspondence to Noor Shafina Mohd Nor.

Ethics declarations

Ethics approval

Ethics approval was not required for this comprehensive review.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Peter de Winter

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkifli, S., Rahman, A.A., Kadir, S.H.S.A. et al. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 180, 3111–3127 (2021). https://doi.org/10.1007/s00431-021-04085-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-021-04085-0

Keywords

Navigation