Skip to main content
Log in

Achieving and maintaining lung volume in the preterm infant: from the first breath to the NICU

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The main goal for the neonatologist is to facilitate the adaptation to extra-uterine life during initial transition, while minimizing lung injury opening and protecting the premature lung from the first breath onwards. An appropriate management from birth should lead to the achievement of an early functional residual capacity (FRC), and the following steps should aim at maintaining an adequate lung volume. To date, different strategies are available to optimize fetal-neonatal transition and promote lung recruitment. New ventilation approaches, such as sustained lung inflation (SLI) and “open lung strategy”, well-established ventilation techniques with a more tailored application and less invasive modalities to administer surfactant have been recently introduced in clinical practice with promising results.

Conclusions: given the current status of neonatal care, it seems that lung injury and BPD could be reduced with multiple strategies starting early in the delivery room. Literature underlines the importance of a respiratory tailored management of preterm infants from birth and during the whole NICU stay.

What is Known:

Experimental and clinical studies have shown that the transition from fetal to adult type cardiorespiratory circulation needs an adequate lung ventilation. An appropriate management in the delivery room should lead to the achievement of an early FRC, and through the following steps, the neonatologist should aim at maintaining an adequate lung volume.

Literature underlines the importance of a respiratory tailored management of preterm infants during the whole NICU stay to maintain the benefits of a successful postnatal adaption.

What is New:

Herewith, we describe the most relevant and recent interventions which can be performed from the delivery room to the NICU stay to guarantee an adequate tradition to postnatal life and an effective cardiorespiratory stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPD:

bronchopulmonary dysplasia

CPAP:

continuous positive airway pressure

ELGAN:

extremely low gestational age neonate

FRC:

functional residual capacity

GA:

gestational age

HFNC:

high-flow nasal cannula

HFV:

high-frequency ventilation

LISA:

less invasive surfactant administration

LRM:

lung recruitment maneuver

MIST:

minimally invasive surfactant therapy

MV:

mechanical ventilation

N-CPAP:

nasal continuous positive airway pressure

NIPPV:

nasal intermittent positive pressure ventilation

PEEP:

positive end expiratory pressure

RDS:

respiratory distress syndrome

RFM:

respiratory function monitor

SI:

sustained inflation

SIMV:

synchronized intermittent mechanical ventilation

VILI:

ventilator-induced lung injury

VLBW:

very low birth weight

References

  1. Ambalavanan N, Carlo WA (2006) Ventilatory strategies in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol 30:192–199

    Article  PubMed  Google Scholar 

  2. Ammari A, Suri M, Milisavljevic V, Sahni R, Bateman D, Sanocka U, Ruzal-Shapiro C, Wung JT, Polin RA (2005) Variables associated with the early failure of nasal CPAP in very low birth weight infants. J Pediatr 147:341–347

    Article  PubMed  Google Scholar 

  3. Bahadue FL, Soll R (2012) Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev 11:CD001456

    PubMed  Google Scholar 

  4. Bruschettini M, Zappettini S, Moja L, Calevo MG (2016) Frequency of endotracheal suctioning for the prevention of respiratory morbidity in ventilated newborns. Cochrane Database Syst Rev 3:CD011493

    PubMed  Google Scholar 

  5. Castoldi F, Daniele I, Fontana P, Cavigioli F, Lupo E, Lista G (2011) Lung recruitment maneuver during volume guarantee ventilation of preterm infants with acute respiratory distress syndrome. Am J Perinatol 28:521–528

    Article  PubMed  Google Scholar 

  6. Cools F, Askie LM, Offringa M, Collaboration toVILISGP (2009) Elective high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome: an individual patient data meta-analysis. BMC Pediatr 9:33

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dargaville PA, Aiyappan A, Cornelius A, Williams C, De Paoli AG (2011) Preliminary evaluation of a new technique of minimally invasive surfactant therapy. Arch Dis Child Fetal Neonatal Ed 96:F243–F248

    Article  PubMed  Google Scholar 

  8. Davies PL, Maxwell NC, Kotecha S (2006) The role of inflammation and infection in the development of chronic lung disease of prematurity. Adv Exp Med Biol 582:101–110

    Article  PubMed  Google Scholar 

  9. Davis PG, Henderson-Smart DJ (2003) Nasal continuous positive airways pressure immediately after extubation for preventing morbidity in preterm infants. Cochrane Database Syst Rev:CD000143

  10. De Jaegere A, van Veenendaal MB, Michiels A, van Kaam AH (2006) Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am J Respir Crit Care Med 174:639–645

    Article  PubMed  Google Scholar 

  11. Dellacà RL, Zannin E, Sancini G, Rivolta I, Leone BE, Pedotti A, Miserocchi G (2008) Changes in the mechanical properties of the respiratory system during the development of interstitial lung edema. Respir Res 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  12. Finer NN, Carlo WA, Duara S, Fanaroff AA, Donovan EF, Wright LL, Kandefer S, Poole WK, Network NIoCHaHDNR (2004) Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial. Pediatrics 114:651–657

    Article  PubMed  Google Scholar 

  13. Fischer HS, Buhrer C (2013) Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics 132:e1351–e1360

    Article  PubMed  Google Scholar 

  14. Foglia EE, Owen LS, Thio M, Ratcliffe SJ, Lista G, Te Pas A, Hummler H, Nadkarni V, Ades A, Posencheg M, Keszler M, Davis P, Kirpalani H (2015) Sustained Aeration of Infant Lungs (SAIL) trial: study protocol for a randomized controlled trial. Trials 16:95

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frank JA, Matthay MA (2003) Science review: mechanisms of ventilator-induced injury. Crit Care 7:233–241

    Article  PubMed  Google Scholar 

  16. Fuchs H, Lindner W, Buschko A, Trischberger T, Schmid M, Hummler HD (2011) Cerebral oxygenation in very low birth weight infants supported with sustained lung inflations after birth. Pediatr Res 70:176–180

    Article  PubMed  Google Scholar 

  17. Gluck L, Kulovich MV, Borer RC, Brenner PH, Anderson GG, Spellacy WN (1971) Diagnosis of the respiratory distress syndrome by amniocentesis. Am J Obstet Gynecol 109:440–445

    Article  CAS  PubMed  Google Scholar 

  18. Goldsmith LS, Greenspan JS, Rubenstein SD, Wolfson MR, Shaffer TH (1991) Immediate improvement in lung volume after exogenous surfactant: alveolar recruitment versus increased distention. J Pediatr 119:424–428

    Article  CAS  PubMed  Google Scholar 

  19. Grant DA, Maloney JE, Tyberg JV, Walker AM (1992) Effects of external constraint on the fetal left ventricular function curve. Am Heart J 123:1601–1609

    Article  CAS  PubMed  Google Scholar 

  20. Hooper SB, te Pas AB, Lewis RA, Morley CJ (2010) Establishing functional residual capacity at birth. NeoReviews 11:e474–e483

    Article  Google Scholar 

  21. Hooper SB, Polglase GR, Roehr CC (2015) Cardiopulmonary changes with aeration of the newborn lung. Paediatr Respir Rev 16:147–150

    PubMed  PubMed Central  Google Scholar 

  22. Hooper SB, Te Pas AB, Kitchen MJ (2016) Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed 101:F266–F271

    Article  PubMed  Google Scholar 

  23. Jobe AH (2010) Lung maturation: the survival miracle of very low birth weight infants. Pediatr Neonatol 51:7–13

    Article  PubMed  Google Scholar 

  24. Jobe AH (2012) What is RDS in 2012? Early Hum Dev 88(Suppl 2):S42–S44

    Article  PubMed  Google Scholar 

  25. Karlberg P (1960) The adaptive changes in the immediate postnatal period, with particular reference to respiration. J Pediatr 56:585–604

    Article  CAS  PubMed  Google Scholar 

  26. Keszler M (2009) State of the art in conventional mechanical ventilation. J Perinatol 29:262–275

    Article  CAS  PubMed  Google Scholar 

  27. Klingenberg C, Sobotka KS, Ong T, Allison BJ, Schmolzer GM, Moss TJ, Polglase GR, Dawson JA, Davis PG, Hooper SB (2013) Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs. Arch Dis Child Fetal Neonatal Ed 98:F222–F227

    Article  PubMed  Google Scholar 

  28. Kribs A, Roll C, Göpel W, Wieg C, Groneck P, Laux R, Teig N, Hoehn T, Böhm W, Welzing L, Vochem M, Hoppenz M, Bührer C, Mehler K, Stützer H, Franklin J, Stöhr A, Herting E, Roth B, Investigators NT (2015) Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr 169:723–730

    Article  PubMed  Google Scholar 

  29. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321

    Article  CAS  PubMed  Google Scholar 

  30. Lemyre B, Davis PG, De Paoli AG, Kirpalani H (2017) Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev 2:CD003212

    PubMed  Google Scholar 

  31. Lista G, Schmoelzer G, Colm OD (2012) Improving assessment during noninvasive ventilation in the delivery room. NeoReviews 13:e364–e371

    Article  Google Scholar 

  32. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192

    Article  CAS  PubMed  Google Scholar 

  33. Mehler K, Grimme J, Abele J, Huenseler C, Roth B, Kribs A (2012) Outcome of extremely low gestational age newborns after introduction of a revised protocol to assist preterm infants in their transition to extrauterine life. Acta Paediatr 101:1232–1239

    Article  PubMed  Google Scholar 

  34. Meredith KS, de Lemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R, Kuehl TJ, Winter DC, Taylor A, Clark RH (1989) Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. J Appl Physiol (1985) 66:2150–2158

    CAS  Google Scholar 

  35. Monkman S, Kirpalani H (2003) PEEP—a “cheap” and effective lung protection. Paediatr Respir Rev 4:15–20

    Article  PubMed  Google Scholar 

  36. More K, Sakhuja P, Shah PS (2014) Minimally invasive surfactant administration in preterm infants: a meta-narrative review. JAMA Pediatr 168:901–908

    Article  PubMed  Google Scholar 

  37. Morton SU, Brodsky D (2016) Fetal physiology and the transition to extrauterine life. Clin Perinatol 43:395–407

    Article  PubMed  PubMed Central  Google Scholar 

  38. O’Donnell CP, Bruschettini M, Davis PG, Morley CJ, Moja L, Calevo MG, Zappettini S (2015) Sustained versus standard inflations during neonatal resuscitation to prevent mortality and improve respiratory outcomes. Cochrane Database Syst Rev:Cd004953

  39. Olver RE, Ramsden CA, Strang LB, Walters DV (1986) The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol 376:321–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. te Pas AB, Siew M, Wallace MJ, Kitchen MJ, Fouras A, Lewis RA, Yagi N, Uesugi K, Donath S, Davis PG, Morley CJ, Hooper SB (2009) Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res 65:537–541

    Article  Google Scholar 

  41. Pfister RH, Soll RF (2012) Initial respiratory support of preterm infants: the role of CPAP, the INSURE method, and noninvasive ventilation. Clin Perinatol 39:459–481

    Article  PubMed  Google Scholar 

  42. Pillow JJ, Minocchieri S (2012) Innovation in surfactant therapy II: surfactant administration by aerosolization. Neonatology 101:337–344

    Article  CAS  PubMed  Google Scholar 

  43. Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952

    Article  CAS  PubMed  Google Scholar 

  44. Roberts D, Brown J, Medley N, Dalziel SR (2017) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454

    PubMed  Google Scholar 

  45. Rojas-Reyes MX, Morley CJ, Soll R (2012) Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev:CD000510

  46. Sarkar S, Donn SM (2007) In support of pressure support. Clin Perinatol 34:117–128 vii

    Article  PubMed  Google Scholar 

  47. Schmolzer GM, Morley CJ, Wong C, Dawson JA, Kamlin CO, Donath SM, Hooper SB, Davis PG (2012) Respiratory function monitor guidance of mask ventilation in the delivery room: a feasibility study. J Pediatr 160:377–381.e372

    Article  PubMed  Google Scholar 

  48. Schmolzer GM, Kumar M, Aziz K, Pichler G, O'Reilly M, Lista G, Cheung PY (2015) Sustained inflation versus positive pressure ventilation at birth: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 100:F361–F368

    Article  PubMed  Google Scholar 

  49. Siew ML, Te Pas AB, Wallace MJ, Kitchen MJ, Lewis RA, Fouras A, Morley CJ, Davis PG, Yagi N, Uesugi K, Hooper SB (2009a) Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth. J Appl Physiol (1985) 106:1487–1493

    Article  Google Scholar 

  50. Siew ML, Wallace MJ, Kitchen MJ, Lewis RA, Fouras A, Te Pas AB, Yagi N, Uesugi K, Siu KK, Hooper SB (2009b) Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol (1985) 106:1888–1895

    Article  Google Scholar 

  51. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15S

    Article  CAS  PubMed  Google Scholar 

  52. Subramaniam P, Ho JJ, Davis PG (2016) Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev:CD001243

  53. Taylor JE, Hawley G, Flenady V, Woodgate PG (2011) Tracheal suctioning without disconnection in intubated ventilated neonates. Cochrane Database Syst Rev:CD003065

  54. Thome UH, Carlo WA, Pohlandt F (2005) Ventilation strategies and outcome in randomised trials of high frequency ventilation. Arch Dis Child Fetal Neonatal Ed 90:F466–F473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tingay DG, Bhatia R, Schmölzer GM, Wallace MJ, Zahra VA, Davis PG (2014) Effect of sustained inflation vs. stepwise PEEP strategy at birth on gas exchange and lung mechanics in preterm lambs. Pediatr Res 75:288–294

    Article  CAS  PubMed  Google Scholar 

  56. Tokieda K, Whitsett JA, Clark JC, Weaver TE, Ikeda K, McConnell KB, Jobe AH, Ikegami M, Iwamoto HS (1997) Pulmonary dysfunction in neonatal SP-B-deficient mice. Am J Phys 273:L875–L882

    CAS  Google Scholar 

  57. Wallace MJ, Hooper SB, Harding R (1990) Regulation of lung liquid secretion by arginine vasopressin in fetal sheep. Am J Phys 258:R104–R111

    CAS  Google Scholar 

  58. Wilkinson D, Andersen C, O'Donnell CP, De Paoli AG, Manley BJ (2016) High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev 2:Cd006405

    PubMed  Google Scholar 

  59. Wiswell TE (2011) Resuscitation in the delivery room: lung protection from the first breath. Respir Care 56:1360–1367 discussion 1367-1368

    Article  PubMed  Google Scholar 

  60. Wright CJ, Polin RA, Kirpalani H (2016) Continuous positive airway pressure to prevent neonatal lung injury: how did we get here, and how do we improve? J Pediatr 173:17–24.e12

    Article  PubMed  Google Scholar 

  61. Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, Simon WM, Weiner GM, Zaichkin JG (2015) Part 13: Neonatal Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 132:S543–S560

    Article  PubMed  Google Scholar 

  62. Zivanovic S, Peacock J, Alcazar-Paris M, Lo JW, Lunt A, Marlow N, Calvert S, Greenough A, Group UKOS (2014) Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med 370:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Gianluca Lista conceptualized this paper, drafted the initial manuscript, and revised the final version. Dr. Andres Maturana conceptualized this paper and reviewed the manuscript. Dr. Fernando Moya conceptualized the paper and wrote the final manuscript. All authors agree with the final paper as submitted.

Corresponding author

Correspondence to Gianluca Lista.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Patrick Van Reempts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lista, G., Maturana, A. & Moya, F.R. Achieving and maintaining lung volume in the preterm infant: from the first breath to the NICU. Eur J Pediatr 176, 1287–1293 (2017). https://doi.org/10.1007/s00431-017-2984-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-017-2984-y

Keywords

Navigation