Skip to main content

Treatment of Respiratory Failure in Newborn: Mechanical Ventilation

  • Living reference work entry
  • First Online:
Neonatology

Abstract

Premature delivery is always associated with the failure of respiratory transition and a delayed achievement of an adequate functional residual capacity. For this reason preterm babies (especially the extremely low for gestational age – ELGA – infants) frequently need respiratory support. Noninvasive ventilation (NIV) is in widespread use in the management of respiratory distress even in ELGA infants without increasing neonatal mortality or neurological impairment.

The most recent meta-analysis and reviews of NIV demonstrated that NIV is a valid alternative to mechanical ventilation (MV) in the management of respiratory failure and resulted in significant reductions in the incidence of bronchopulmonary dysplasia (BPD) among surviving infants.

Nevertheless, preterm babies, mainly ELGA infants, require MV because they have unresponsive apnea, or a high and rising PaCO2, and/or a high and rising FiO2 despite treatment with continuous positive airway pressure (CPAP).

Pressure-limited ventilation continues to be the primary mode of ventilation in neonates because of its relative simplicity and ability to ventilate effectively despite large endotracheal tube (ETT) leaks.

The major disadvantage of pressure-limited ventilation is that the tidal volume (VT) varies as the baby alters its breathing pattern and with changes in lung compliance (e.g., after surfactant therapy). The consequences of such rapid improvements in compliance are inadvertent hyperventilation and lung injury from excessively large VT (volutrauma); hyperventilation may induce hypocapnia, with high risk of cerebral damage. There is strong evidence that excessive tidal volumes, rather than the ventilator pressure, are the key determinant of ventilator-induced lung injury (VILI). Inadequate (too small) VT also causes significant problems (atelectrauma): in particular inefficient gas exchange due to increased dead space to VT ratio. Therefore, in the last few years, tidal volume-targeted ventilation has become an important standard of care in neonatal and pediatric respiratory support.

There are many volume-targeted ventilation modes used in neonatal period, but volume guarantee (VG) ventilation is the most extensively studied.

The Cochrane review on volume-targeted ventilation showed significant reductions in duration of ventilation, rates of pneumothorax (PTX), and intraventricular hemorrhage (IVH) and a borderline significant reduction in the incidence of BPD in surviving infants. Also VG ventilation plus adequate PEEP, with an open lung strategy, is an alternative to high-frequency oscillatory ventilation (HFOV) in infants ventilated for severe RDS. Nevertheless in a baby with very stiff lungs, pulmonary interstitial emphysema (PIE) or PTX, the use of HFOV still remains the best ventilator approach.

To optimize ventilatory management of infants with respiratory failure and to adjust the ventilatory settings, it is important to monitor the blood gases and perform chest X-ray. As most modern ventilators have numerical and graphical displays of ventilator parameters, these should be used to guide ventilation management and reduce the risk of lung injury.

It is important to wean babes from the ventilator and extubate them as soon as possible to reduce the risk of pulmonary infections and BPD. In many cases early caffeine administration can reduce the duration of mechanical ventilation, BPD, and the occurrence of respiratory and neurological adverse outcome. It is therefore important to have a respiratory protocol that helps the neonatologist to manage both the acute and the recovery phase of respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abubakar K, Keszler M (2005) Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol 25(10):638–642

    Article  PubMed  Google Scholar 

  • Ammari A et al (2005) Variables associated with the early failure of nasal CPAP in very low birth weight infants. J Pediatr 147(3):341–347

    Article  PubMed  Google Scholar 

  • Attar MA, Donn SM (2002) Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol 7(5):353–360

    Article  PubMed  Google Scholar 

  • Aziz HF et al (1999) The pediatric disposable end-tidal carbon dioxide detector role in endotracheal intubation in newborns. J Perinatol 19(2):110–113

    Article  CAS  PubMed  Google Scholar 

  • Bamat N et al. (2012) Positive end expiratory pressure for preterm infants requiring conventional mechanical ventilation for respiratory distress syndrome or bronchopulmonary dysplasia. Cochrane Database Syst Rev CD004500.pub2

    Google Scholar 

  • Beck J et al (2009) Patient-ventilator interaction during neurally adjusted ventilatory assist in very low birth weight infants. Pediatr Res 65(6):663–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellu R et al (2009) Opioids for neonates receiving mechanical ventilation. A systematic review and meta-Analysis. Arch Dis Child Fetal Neonatal Ed 95(4):F241–F251

    Article  PubMed  Google Scholar 

  • Bhandari V et al (2005) Morphine administration and short-term pulmonary outcomes among ventilated preterm infants. Pediatrics 116(2):352–359

    Article  PubMed  Google Scholar 

  • Bjorklund LJ et al (1997) Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 42(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Carlo WA et al (1987) Control of laryngeal muscle activity in preterm infants. Pediatr Res 22(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Castoldi F et al (2011) Lung recruitment maneuver during volume guarantee ventilation of preterm infants with acute respiratory distress syndrome. Am J Perinatol 28(7):521–528

    Article  PubMed  Google Scholar 

  • Cools F, Offringa M (2005) Neuromuscular paralysis for newborn infants receiving mechanical ventilation. Cochrane Database Syst Rev (2): p CD002773

    Google Scholar 

  • Dargaville PA, Tingay DG (2012) Lung protective ventilation in extremely preterm infants. J Paediatr Child Health 48:740–746

    Article  PubMed  Google Scholar 

  • Davis P et al (1998) Randomised controlled trial of nasal continuous positive airway pressure in the extubation of infants weighing 600 to 1250 g. Arch Dis Child Fetal Neonatal Ed 78:F1–F4

    Article  Google Scholar 

  • De Jaegere A et al (2006) Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am J Respir Crit Care Med 174:639–645

    Article  PubMed  Google Scholar 

  • Donn SM, Sinha SK (2003) Can mechanical ventilation strategies reduce chronic lung disease? Semin Neonatol 8(6):441–448

    Article  PubMed  Google Scholar 

  • Greenough A et al (1986) Fighting the ventilator–are fast rates an effective alternative to paralysis? Early Hum Dev 13(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM et al (2002) Effects of volume-guaranteed synchronized intermittent mandatory ventilation in preterm infants recovering from respiratory failure. Pediatrics 110(3):529–533

    Article  PubMed  Google Scholar 

  • Hoellering AB et al (2008) Lung volume and cardiorespiratory changes during open and closed endotracheal suction in ventilated newborn infants. Arch Dis Child Fetal Neonatal Ed 93(6):F436–F441

    Article  CAS  PubMed  Google Scholar 

  • Hummler H, Schuze A (2009) New and alternative modes of mechanical ventilation in neonates. Semin Fetal Neonatal Med 14(1):42–48

    Article  PubMed  Google Scholar 

  • Kamlin CO et al (2005) Colorimetric end-tidal carbon dioxide detectors in the delivery room: strengths and limitations. A case report. J Pediatr 147(4):547–548

    Article  PubMed  Google Scholar 

  • Kamlin CO et al (2006) Predicting successful extubation of very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 91(3):F180–F183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keszler M, Abubakar K (2004) Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 38(3):240–245

    Article  PubMed  Google Scholar 

  • Lane B et al (2004) Duration of intubation attempts during neonatal resuscitation. J Pediatr 145(1):67–70

    Article  PubMed  Google Scholar 

  • McCallion N et al (2005) Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev (3): CD003666

    Google Scholar 

  • McCallion N et al (2005b) Volume guarantee ventilation, interrupted expiration, and expiratory braking. Arch Dis Child 90(8):865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallion N et al (2008) Neonatal volume guarantee ventilation: effects of spontaneous breathing, triggered and untriggered inflations. Arch Dis Child Fetal Neonatal Ed 93(1):F36–F39

    Article  CAS  PubMed  Google Scholar 

  • Monkman S, Kirpalani H (2003) PEEP – a “cheap” and effective lung protection. Pediatr Resp Rev 4(1):15–20

    Article  Google Scholar 

  • Morley CJ et al (2008) Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 358(7):700–708

    Article  CAS  PubMed  Google Scholar 

  • Mrozek JD et al (2000) Randomized controlled trial of volume-targeted synchronized ventilation and conventional intermittent mandatory ventilation following initial exogenous surfactant therapy. Pediatr Pulmonol 29(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell CP et al (2006) Endotracheal intubation attempts during neonatal resuscitation: success rates, duration, and adverse effects. Pediatrics 117(1):e16–e21

    Article  PubMed  Google Scholar 

  • Okumura A et al (2001) Hypocarbia in preterm infants with periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics 107(3):469–475

    Article  CAS  PubMed  Google Scholar 

  • Osorio W et al (2005) Effects of pressure support during an acute reduction of synchronized intermittent mandatory ventilation in preterm infants. J Perinatol 25(6):412–416

    Article  PubMed  Google Scholar 

  • Patel DS et al (2009) Work of breathing and different levels of volume-targeted ventilation. Pediatrics 123(4):e679–e684

    Article  PubMed  Google Scholar 

  • Pellicano A et al (2009) Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Med 35(11):1990–1998

    Article  PubMed  Google Scholar 

  • Peng WS et al (2014) Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 99:F158–F165

    Article  PubMed  Google Scholar 

  • Reyes ZC et al (2006) Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants. Pediatrics 118(4):1409–1417

    Article  PubMed  Google Scholar 

  • Schmidt B et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354(20):2112–2121

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B et al (2007) Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 357(19):1893–1902

    Article  CAS  PubMed  Google Scholar 

  • Schmolzer GM et al (2010) Respiratory monitoring of neonatal resuscitation. Arch Dis Child Fetal Neonatal Ed 95(4):F295–F303

    Article  PubMed  Google Scholar 

  • Schulze A (2007) Respiratory gas conditioning and humidification. Clin Perinatol 34(1):19–33

    Article  PubMed  Google Scholar 

  • Singh J et al (2007) Volume-targeted ventilation of newborns. Clin Perinatol 34:9–1053

    Article  Google Scholar 

  • South M, Morley CJ (1986a) Synchronous mechanical ventilation of the neonate. Arch Dis Child 61(12):1190–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • South M, Morley CJ (1986b) Monitoring spontaneous respiration in the ventilated neonate. Arch Dis Child 61(3):291–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • South M, Morley CJ (1986c) Ventilator settings and active expiration. Arch Dis Child 61:310–311

    Article  PubMed Central  Google Scholar 

  • South M, Morley CJ (1992) Respiratory timing in intubated neonates with respiratory distress syndrome. Arch Dis Child 67(4):446–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • South M et al (1987) Expiratory muscle activity in preterm babies. Arch Dis Child 62(8):825–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • South M et al (1988) A simple technique for recording the electromyogram of the external abdominal oblique muscle in the newborn. Early Hum Dev 16(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Stein H et al (2013) Prospective crossover comparison between NAVA and pressure control ventilation in premature neonates less than 1500 grams. J Perinatol 33(6):452–456

    Article  CAS  PubMed  Google Scholar 

  • Swingle HM et al (1984) New approach to management of unilateral tension pulmonary interstitial emphysema in premature infants. Pediatrics 74(3):354–357

    CAS  PubMed  Google Scholar 

  • Thome U et al (1998) The effect of positive end expiratory pressure, peak inspiratory pressure, and inspiratory time on functional residual capacity in mechanically ventilated preterm infants. Eur J Pediatr 157(10):831–837

    Article  CAS  PubMed  Google Scholar 

  • Tingay DG et al (2007) Effects of open endotracheal suction on lung volume in infants receiving HFOV. Intensive Care Med 33(4):689–693

    Article  CAS  PubMed  Google Scholar 

  • Wheeler KI et al (2009a) Assist control volume guarantee ventilation during surfactant administration. Arch Dis Child Fetal Neonatal Ed 94(5):F336–F338

    Article  CAS  PubMed  Google Scholar 

  • Wheeler KI et al (2009b) Volume-guarantee ventilation: pressure may decrease during obstructed flow. Arch Dis Child Fetal Neonatal Ed 94(2):F84–F86

    Article  CAS  PubMed  Google Scholar 

  • Wheeler KK et al (2010) Volume-targeted or pressure-limited ventilation in the neonate. Cochrane Database Syst Rev 11:CD003666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin Morley or Gianluca Lista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Morley, C., Lista, G. (2016). Treatment of Respiratory Failure in Newborn: Mechanical Ventilation. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-18159-2_202-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18159-2_202-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18159-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics