Skip to main content
Log in

BTNL2 gene polymorphisms may be associated with susceptibility to Kawasaki disease and formation of coronary artery lesions in Taiwanese children

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The butyrophilin-like 2 (BTNL2) gene is a member of the B7 receptor family that probably functions as a T cell costimulatory molecule. Because altered T cell functions are implicated in dysregulation of the immune response seen in Kawasaki disease (KD), it is reasonable to speculate that BTNL2 gene is involved in the pathophysiology of KD. The purpose of this study was to investigate whether polymorphisms of the BTNL2 gene are associated with KD and the development of coronary artery lesions (CALs) in Taiwanese children. Nine-three patients with KD and 669 ethnically matched healthy controls were genotyped for BTNL2 gene rs1555115 C/G and rs2395158 A/G polymorphisms. The frequency of GG genotype of rs 1555115 was significantly higher in KD patients compared with controls (2.2% vs 0.2%, P = 0.012). The odds ratio for developing KD in individuals with rs 1555115 GG genotype was 14.7 (95% confidence interval, 2.04–105.5, P = 0.003) compared with individuals with rs 1555115 CG and CC genotypes. No significant difference was observed in the genotype and allelic frequencies of rs 2395158 polymorphism between KD patients and controls. However, the frequency of the G allele of rs 2395158 was significantly higher in KD patients with CALs than in those without CALs (P = 0.001). No significant difference was observed in the genotype and allelic frequencies of rs 1555115 polymorphism between KD patients with and without CALs. In conclusion, our results suggest that BTNL2 gene polymorphisms might be genetic markers of KD susceptibility and risk of coronary artery complication in Taiwanese children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BTNL2:

Butyrophilin-like 2

KD:

Kawasaki disease

CALs:

Coronary artery lesions

MHC:

Major histocompatibility complex

HLA:

Human leukocyte antigen

SNP:

Single nucleotide polymorphism

References

  1. Barron KS, Silverman ED, Gonzales JC et al (1992) Major histocompatibility complex class II alleles in Kawasaki syndrome—lack of consistent correlation with disease or cardiac involvement. J Rheumatol 19:1790–1793

    CAS  PubMed  Google Scholar 

  2. Brown TJ, Crawford SE, Cornwall ML et al (2001) CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis 184:940–943

    Article  CAS  PubMed  Google Scholar 

  3. Burns JC, Glode MP (2004) Kawasaki syndrome. Lancet 364:533–544

    Article  PubMed  Google Scholar 

  4. Chang CC, Hawkins BR, Kao HK et al (1992) Human leucocyte antigens in southern Chinese with Kawasaki disease. Eur J Pediatr 151:866

    Article  CAS  PubMed  Google Scholar 

  5. Chang LY, Chang IS, Lu CY, Kawasaki Disease Research Group et al (2004) Epidemiologic features of Kawasaki disease in Taiwan, 1996–2002. Pediatrics 114:e678–e682

    Article  PubMed  Google Scholar 

  6. Choi J, Enis DR, Koh KP et al (2004) T lymphocyte–endothelial cell interactions. Annu Rev Immunol 22:683–709

    Article  CAS  PubMed  Google Scholar 

  7. Cunningham MW, Meissner HC, Heuser JS et al (1999) Anti-human cardiac myosin autoantibodies in Kawasaki syndrome. J Immunol 163:1060–1065

    CAS  PubMed  Google Scholar 

  8. Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022

    CAS  PubMed  Google Scholar 

  9. Fildes N, Burns JC, Newburger JW et al (2004) The HLA class II region and susceptibility to Kawasaki disease. Tissue Antigens 39:99–101

    Article  Google Scholar 

  10. Furuno K, Yuge T, Kusuhara K et al (2004) CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr 145:385–390

    Article  CAS  PubMed  Google Scholar 

  11. Gardner-Medwin JM, Dolezalova P, Cummins C et al (2002) Incidence of Henoch–Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360:1197–1202

    Article  PubMed  Google Scholar 

  12. Hirao J, Sugita K (1998) Circulating CD4+CD8+ T lymphocytes in patients with Kawasaki disease. Clin Exp Immunol 111:397–401

    Article  CAS  PubMed  Google Scholar 

  13. Huang FY, Chang TY, Chen MR et al (2007) Genetic variations of HLA-DRB1 and susceptibility to Kawasaki disease in Taiwanese children. Hum Immunol 68:69–74

    Article  CAS  PubMed  Google Scholar 

  14. Hung SI, Chung WH, Liou LB et al (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 102:4134–4139

    Article  CAS  PubMed  Google Scholar 

  15. Jason J, Gregg L, Han A et al (1997) Immunoregulatory changes in Kawasaki disease. Clin Immunol Immunopathol 84:296–306

    Article  CAS  PubMed  Google Scholar 

  16. Kaslow RA, Bailowitz A, Lin FY et al (1985) Association of epidemic Kawasaki syndrome with the HLA-A2, B44, Cw5 antigen combination. Arthritis Rheum 28:938–940

    Article  CAS  PubMed  Google Scholar 

  17. Kato H, Sugimura T, Akagi T et al (1996) Long-term consequences of Kawasaki disease: a 10- to 21-year follow-up study of 594 patients. Circulation 94:1379–1385

    CAS  PubMed  Google Scholar 

  18. Kato S, Kimura M, Tsuji K et al (1978) HLA antigens in Kawasaki disease. Pediatrics 61:252–255

    CAS  PubMed  Google Scholar 

  19. Kawasaki T (2001) Kawasaki disease: a new disease? Acta Paediatr Taiwan 42:8–10

    CAS  PubMed  Google Scholar 

  20. Keren G, Danon YL, Orgad S et al (1982) HLA Bw51 is increased in mucocutaneous lymph node syndrome in Israeli patients. Tissue Antigens 20:144–146

    Article  CAS  PubMed  Google Scholar 

  21. Kimura J, Takada H, Nomura A et al (2004) Th1 and Th2 cytokine production is suppressed at the level of transcriptional regulation in Kawasaki disease. Clin Exp Immunol 137:444–449

    Article  CAS  PubMed  Google Scholar 

  22. Krensky AM, Berenberg W, Shanley K et al (1981) HLA antigens in mucocutaneous lymph node syndrome in New England. Pediatrics 67:741–743

    CAS  PubMed  Google Scholar 

  23. Krensky AM, Grady S, Shanley KM et al (1983) Epidemic and endemic HLA-B and DR associations in mucocutaneous lymph node syndrome. Hum Immunol 6:75–77

    Article  CAS  PubMed  Google Scholar 

  24. Krinzman SJ, De Sanctis GT, Cernadas M et al (1996) Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 98:2693–2699

    Article  CAS  PubMed  Google Scholar 

  25. Leung DY, Geha RS, Newburger JW et al (1986) Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J Exp Med 164:1958–1972

    Article  CAS  PubMed  Google Scholar 

  26. Leung DY, Cotran RS, Kurt-Jones E et al (1989) Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease. Lancet 2:1298–1302

    Article  CAS  PubMed  Google Scholar 

  27. Lin CY, Lin CC, Hwang B et al (1992) Serial changes of serum interleukin-6, interleukin-8, and tumor necrosis factor-α among patients with Kawasaki disease. J Pediatr 121:924–926

    Article  CAS  PubMed  Google Scholar 

  28. Maclaren N, Skordis N (1987) Is Kawasaki HLA associated? Prog Clin Biol Res 250:475–484

    CAS  PubMed  Google Scholar 

  29. Matsubara T, Furukawa S, Yabuta K (1990) Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-γ in Kawasaki disease involved coronary-artery lesions. Clin Immunol Immunopathol 56:29–36

    Article  CAS  PubMed  Google Scholar 

  30. Matsuda I, Hattori S, Nagata N et al (1977) HLA antigens in mucocutaneous lymph node syndrome. Am J Dis Child 131:1417–1418

    CAS  PubMed  Google Scholar 

  31. Nguyen T, Liu XK, Zhang Y et al (2006) BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 176:7354–7360

    CAS  PubMed  Google Scholar 

  32. Research Committee on Kawasaki Disease (1984) Report of Subcommittee on Standardization of Diagnostic Criteria and Reporting of Coronary Artery Lesions in Kawasaki Disease. Ministry of Health and Welfare of Japan, Tokyo

    Google Scholar 

  33. Rybicki BA, Walewski JL, Maliarik MJ et al (2005) TheBTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet 77:491–499

    Article  CAS  PubMed  Google Scholar 

  34. Schiller B, Elinder G (1999) Inflammatory parameters and soluble cell adhesion molecules in Swedish children with Kawasaki disease: relationship to cardiac lesions and intravenous immunoglobulin treatment. Acta Paediatr 88:844–848

    Article  CAS  PubMed  Google Scholar 

  35. Shahinian A, Pfeffer K, Lee KP et al (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261:609–612

    Article  CAS  PubMed  Google Scholar 

  36. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  CAS  PubMed  Google Scholar 

  37. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed  Google Scholar 

  38. Sherry ST, Ward M, Sirotkin K (2000) Use of molecular variation in the NCBI dbSNP database. Hum Mutat 15:68–75

    Article  CAS  PubMed  Google Scholar 

  39. Stammers M, Rowen L, Rhodes D et al (2000) BTL-II: a polymorphic locus with homology to the butyrophilin gene family, located at the border of the major histocompatibility complex class II and class III regions in human and mouse. Immunogenetics 51:373–382

    Article  CAS  PubMed  Google Scholar 

  40. Valentonyte R, Hampe J, Huse K et al (2005) Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 37:357–364

    Article  CAS  PubMed  Google Scholar 

  41. Wang CL, Wu YT, Liu CA et al (2005) Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J 24:998–1004

    Article  PubMed  Google Scholar 

  42. Yadav D, Khuller G (2001) Evaluation of the T cells and costimulatory molecules in the protective efficacy of 30 kDa secretory protein against experimental tuberculosis. Immunol Cell Biol 79:207–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Medical University (CMU95-142) and the China Medical University Hospital (DMR-91-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuu-Jen Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsueh, KC., Lin, YJ., Chang, JS. et al. BTNL2 gene polymorphisms may be associated with susceptibility to Kawasaki disease and formation of coronary artery lesions in Taiwanese children. Eur J Pediatr 169, 713–719 (2010). https://doi.org/10.1007/s00431-009-1099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-009-1099-5

Keywords

Navigation