Skip to main content

Advertisement

Log in

Maternal active or passive smoking causes oxidative stress in cord blood

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the influence of active and passive maternal smoking on cord blood total oxidant/antioxidant status at term. The levels of cord blood catalase (CAT), paraoxonase 1 (PON1), ceruloplasmin, total thiol and lipid hydroperoxide (LOOH), total antioxidant capacity (TAC), total oxidant status (TOS) and the oxidative stress index (OSI) were measured in samples of fetal cord blood serum from 29 nonsmokers who were not exposed to active or passive smoke, 30 passive smokers and 21 active smokers. The gestation period of all pregnancies was between 37 and 40 weeks, the pregnancies were uncomplicated and the infants were delivered vaginally. The weights of infants borne to the active smokers were significantly (P < 0.01) lower than those borne to the controls. Significantly lower concentrations of CAT, PON1 and TAC were found in the cord blood of the smokers than in that of the nonsmokers (P < 0.018). The cord blood levels of LOOH and TOS and OSI were significantly higher in the active and passive smokers than in the controls (P < 0.01). A significant positive correlation was found between maternal tobacco exposure and cord blood OSI (P < 0.001). Active or passive maternal smoking is associated with important alterations in the balance of oxidants and antioxidants in fetal cord blood and causes potent oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

LOOH:

lipid hydroperoxide

PON1:

paraoxonase 1

OSI:

oxidative stress index

TAC:

total antioxidant capacity

TOS:

total oxidant status

References

  1. Ahn MR, Kumazawa S, Hamasaka T, Bang KS, Nakayama T (2004) Antioxidant activity and constituents of propolis collected in various areas of Korea. J Agric Food Chem 52:7286–7292

    Article  PubMed  CAS  Google Scholar 

  2. Alberg AJ (2002) The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 180:12

    Article  Google Scholar 

  3. Arab K, Steghens JP (2004) Serum lipid hydroperoxides measurement by an automated xylenol orange method. Anal Biochem 325:158–163

    Article  PubMed  CAS  Google Scholar 

  4. Aycicek A, Erel O, Kocyigit A (2005) Decreased total antioxidant capacity and increased oxidative stress in passive smoker infants and their mothers. Pediatr Int 47:635–639

    Article  PubMed  CAS  Google Scholar 

  5. Aycicek A, Erel O, Kocyigit A (2005b) Increased oxidative stress in infants exposed to passive smoking. Eur J Pediatr 164:775–778

    Article  PubMed  CAS  Google Scholar 

  6. Aycicek A, Erel O, Kocyigit A, Selek S, Demirkol MR (2006) Breast milk provides better antioxidant power than do formula. Nutrition 22:616–619

    Article  PubMed  CAS  Google Scholar 

  7. Bolisetty S, Naidoo D, Lui K, Koh TH, Watson D, Montgomery R, Whitehall J (2002) Postnatal changes in maternal and neonatal plasma antioxidant vitamins and the influence of smoking. Arch Dis Child Fetal Neonatal Ed 86:F36–F40

    Article  PubMed  CAS  Google Scholar 

  8. Brown AJ (1998) Paradoxical effects of acute cigarette smoking on plasma antioxidant status in humans. Nutr Res 18:1499–1519

    Article  CAS  Google Scholar 

  9. Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315

    PubMed  CAS  Google Scholar 

  10. Chelchowska M, Laskowska-Klita T, Leibschang J (2005) The effect of tobacco smoking during pregnancy on concentration of malondialdehyde in blood of mothers and in umbilical cord blood. Ginekol Pol 76:960–965

    PubMed  Google Scholar 

  11. Cross CE, O’Neill CA, Reznick AZ, Hu ML, Marcocci L, Packer L, Frei B (1993) Cigarette smoke oxidation of human plasma constituents. Ann N Y Acad Sci 686:72

    Article  PubMed  CAS  Google Scholar 

  12. Dalamaga AL, Agroyannis B, Vitoratos N, Frangos-Plemenos M, Patsouras K, Kostoglou-Papalamprou M, Zourlas PA (1996) Effect of smoking on ceruloplasmin and its ferroxidase activity in pregnant women. Gynecol Obstet Invest 42:13–15

    Article  PubMed  CAS  Google Scholar 

  13. Durak I, Elgun S, Kemal Bingol N, Burak Cimen MY, Kacmaz M, Buyukkocak S, Serdar Ozturk H (2002) Effects of cigarette smoking with different tar content on erythrocyte oxidant/antioxidant status. Addict Biol 7:255

    Article  PubMed  CAS  Google Scholar 

  14. Eckerson HW, Wyte MC, La Du BN (1983) The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 35:1126–1138

    PubMed  CAS  Google Scholar 

  15. El-Zayadi AR (2006) Heavy smoking and liver. World J Gastroenterol 14:6098–61101

    Google Scholar 

  16. Erel O (1998) Automated measurement of serum ferroxidase activity. Clin Chem 44:2313–2319

    PubMed  CAS  Google Scholar 

  17. Erel O (2004a) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  PubMed  CAS  Google Scholar 

  18. Erel O (2004b) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37:112–119

    Article  PubMed  CAS  Google Scholar 

  19. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  PubMed  CAS  Google Scholar 

  20. Fayol L, Gulian JM, Dalmasso C, Calaf R, Simeoni U, Millet V (2005) Antioxidant status of neonates exposed in utero to tobacco smoke. Biol Neonate 87:121–126

    Article  PubMed  CAS  Google Scholar 

  21. Frei B, Forte TM, Ames BN, Cross CE (1991) Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Biochem J 277:133–138

    PubMed  CAS  Google Scholar 

  22. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–152

    Article  PubMed  CAS  Google Scholar 

  23. Harats D, Ben-Naim M, Dabach Y, Hollander G, Stein 0, Stein Y (1989) Cigarette smoking renders LDL susceptible to peroxidative modifications and enhanced metabolism by macrophages. Atherosclerosis 79:245–252

    Article  PubMed  CAS  Google Scholar 

  24. Harma M, Harma M, Erel O (2003) Increased oxidative stress in patients with hydatidiform mole. Swiss Med Wkly 133:563–566

    PubMed  CAS  Google Scholar 

  25. Harma M, Harma M, Erel O (2005) Oxidative stress in women with preeclampsia. Am J Obstet Gynecol 192:656–657

    Article  PubMed  Google Scholar 

  26. Hu ML, Louie S, Cross CE, Motchnik P, Halliwell B (1993) Antioxidant protection against hyochlorous acid in human plasma. J Lab Clin Med 121:257–262

    PubMed  CAS  Google Scholar 

  27. Kelly G (2003) The interaction of cigarette smoking and antioxidants. Part III: Ascorbic acid. Altern Med Rev 8:43–54

    PubMed  Google Scholar 

  28. Kim DH, Suh YS, Mun KC (2004) Tissue levels of malondialdehyde after passive smoke exposure of rats for a 24-week period. Nicotine Tob Res 6:1039–1042

    Article  PubMed  CAS  Google Scholar 

  29. Kondo T, Tagami S, Yoshioka A, Nishimura M, Kawakami Y (1994) Current smoking of elderly men reduces antioxidants in alveolar macrophages. Am J Respir Crit Care Med 149:178–182

    PubMed  CAS  Google Scholar 

  30. Kosecik M, Erel O, Sevinc E, Selek S (2005) Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 100:61–64

    Article  PubMed  Google Scholar 

  31. Liu X, Lu J, Liu S (1999) Synergistic induction of hydroxyl radical-induced DNA singlestrand breaks by chromium (VI) compound and cigarette smoke solution. Mutat Res 440:109

    PubMed  CAS  Google Scholar 

  32. Martinez FD, Wright AL, Taussig LM (1994) The effect of paternal smoking on the birthweight of newborns whose mothers did not smoke. Group Health Medical Associates. Am J Public Health 84:1489–1491

    PubMed  CAS  Google Scholar 

  33. McCall MR, van den Berg JJM, Kuypers FA, Tribble DL, Krauss RM, Knoff LJ, Forte TM (1994) Modification of LCAT activity and HDL structure. New links between cigarette smoke and coronary heart disease. Arterioscler Thromb 14:248–253

    PubMed  CAS  Google Scholar 

  34. Polidori MC, Mecocci P, Stahl W, Sies H (2003) Cigarette smoking cessation increases plasma levels of several antioxidant micronutrients and improves resistance towards oxidative challenge. Br J Nutr 90:147–150

    Article  PubMed  CAS  Google Scholar 

  35. Rahman I, MacNee W (1996) Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. Thorax 51:348

    Article  PubMed  CAS  Google Scholar 

  36. Scheffler E, Wiest E, Woehrle J, Otto I, Schulz I, Huber L, Ziegler R, Dressel HA (1992) Smoking influences the atherogenic potential of low-density lipoprotein. Clin Invest 70:263–268

    Article  CAS  Google Scholar 

  37. Schwertner HA (1998) Association of smoking and low serum bilirubin antioxidant Atherosclerosis 136:383–387

    Article  PubMed  CAS  Google Scholar 

  38. Stiller-Winkler R, Idel H, Leng G, Spix C, Dolgner R (1996) Influence of air pollution on humoral immune response. J Clin Epidemiol 49:527–534

    Article  PubMed  CAS  Google Scholar 

  39. Wisborg K, Kesmodel U, Henriksen TB, Olsen SF, Secher NJ (2001) Exposure to tobacco smoke in utero and the risk of stillbirth and death in the first year of life. Am J Epidemiol 154:322–327

    Article  PubMed  CAS  Google Scholar 

  40. Yildiz L, Kayaoglu N, Aksoy H (2002) The changes of superoxide dismutase, catalase and glutathione peroxidase activities in erythrocytes of active and passive smokers. Clin Chem Lab Med 40:612

    Article  PubMed  CAS  Google Scholar 

  41. Yokode M, Kita T, Arai H, Kawai C, Narumiya S, Fujiwara M (1988) Cholesteryl ester accumulation in macrophages incubated with low density lipoprotein pretreated with cigarette smoke extract. Proc Natl Acad Sci USA 85:2344–2348

    Article  PubMed  CAS  Google Scholar 

  42. Yoshie Y, Ohshima H (1997) Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide. Carcinogenesis 18:1359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are most grateful to the technical staff of the Laboratory and Delivery Unit at Sanliurfa Women’s Hospital and Harran University Medical School Biochemistry Department for their assistance in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aycicek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aycicek, A., Ipek, A. Maternal active or passive smoking causes oxidative stress in cord blood. Eur J Pediatr 167, 81–85 (2008). https://doi.org/10.1007/s00431-007-0433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-007-0433-z

Keywords

Navigation