Skip to main content

Tobacco Smoking and Oxidative Stress in Pregnancy

  • Chapter
  • First Online:
Perinatal and Prenatal Disorders

Abstract

Maternal cigarette smoking is an ongoing problem affecting the health of the mother and child. Pregnant women have continuing smoking rates as high as 80–85 %. Active or passive exposure to tobacco smoke results in intrauterine growth retardation, an increased risk of spontaneous abortion, a higher risk of sudden infant death syndrome, reduction of pulmonary function in healthy neonates, and wheezy bronchitis in children leading to abnormal lung function in childhood and tracking into adulthood. Several mechanisms have been postulated to explain such effects. One possibility given credence by several studies is that cigarette smoke, rich in free radicals and oxidizing species, depletes plasma antioxidants in the mother and cord blood and placenta tissue. Levels of both enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase and nonenzymatic antioxidants such as albumin, uric acid, ceruloplasmin, bilirubin, and vitamin C were significantly lower, while levels of oxidants such as lipid hydroperoxide, malondialdehyde, and total peroxide were significantly higher in mothers that were active or passive smokers and their fetuses compared with the controls. A positive significant correlation was found between number of cigarettes and oxidative stress levels. Finally, oxidation of lipids, inactivation of certain proteins and enzymes, induction of DNA single-strand breakage, transcriptome alteration, and disruption of biological membranes occur.

In conclusion, active or passive maternal smoking is associated with important alterations in oxidant and antioxidant balance in fetal placental tissue, cord blood, and maternal peripheral blood and causes potent oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAT:

Catalase

GPX:

Glutathione peroxidase

LOOH:

Lipid hydroperoxide

MDA:

Malondialdehyde

OSI:

Oxidative stress index

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TAC:

Total oxidant capacity

TOS:

Total oxidant capacity

References

  1. French GM, Groner JA, Wewers ME, et al. Staying smoke free: an intervention to prevent postpartum relapse. Nicotine Tob Res. 2007;9:663–70.

    Article  PubMed  Google Scholar 

  2. Breslow L. Cigarette smoking and health. Public Health Rep. 1980;95:451–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Martinez FD, Wright AL, Taussig LM. The effect of paternal smoking on the birthweight of newborns whose mothers did not smoke. Group Health Medical Associates. Am J Public Health. 1994;84:1489–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wisborg K, Kesmodel U, Henriksen TB, et al. Exposure to tobacco smoke in utero and the risk of stillbirth and death in the first year of life. Am J Epidemiol. 2001;154:322–7.

    Article  CAS  PubMed  Google Scholar 

  5. Park EY, Hong YC, Lee KH, et al. Maternal exposure to environmental tobacco smoke, GSTM1/T1 polymorphisms and oxidative stress. Reprod Toxicol. 2008;26:197–202.

    Article  CAS  PubMed  Google Scholar 

  6. Steyn K, de Wet T, Saloojee Y, et al. The influence of maternal cigarette smoking, snuff use and passive smoking on pregnancy outcomes: the Birth To Ten Study. Paediatr Perinat Epidemiol. 2006;20:90–9.

    Article  PubMed  Google Scholar 

  7. Jauniaux E, Burton GJ. Morphological and biological effects of maternal exposure to tobacco smoke on the feto-placental unit. Early Hum Dev. 2007;83:699–706.

    Article  CAS  PubMed  Google Scholar 

  8. Bruchova H, Vasikova A, Merkerova M, et al. Effect of maternal tobacco smoke exposure on the placental transcriptome. Placenta. 2010;31:186–91.

    Article  CAS  PubMed  Google Scholar 

  9. Votavova H, Dostalova Merkerova M, Fejglova K, et al. Transcriptome alterations in maternal and fetal cells induced by tobacco smoke. Placenta. 2011;32:763–70.

    Article  CAS  PubMed  Google Scholar 

  10. George L, Granath F, Johansson AL, et al. Environmental tobacco smoke and risk of spontaneous abortion. Epidemiology. 2006;17:500–5.

    Article  PubMed  Google Scholar 

  11. Lodrup Carlsen KC, Jaakkola JJ, Nafstad P, et al. In utero exposure to cigarette smoking influences lung function at birth. Eur Respir J. 1997;10:1774–9.

    Article  CAS  PubMed  Google Scholar 

  12. Zlotkowska R, Zejda JE. Fetal and postnatal exposure to tobacco smoke and respiratory health in children. Eur J Epidemiol. 2005;20:719–27.

    Article  PubMed  Google Scholar 

  13. Landau LI. Tobacco smoke exposure and tracking of lung function into adult life. Paediatr Respir Rev. 2008;9:39–44.

    Article  PubMed  Google Scholar 

  14. Alberg AJ. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology. 2002;180:121–37.

    Article  CAS  PubMed  Google Scholar 

  15. Aycicek A, Ipek A. Maternal active or passive smoking causes oxidative stress in cord blood. Eur J Pediatr. 2008;167:81–5.

    Article  CAS  PubMed  Google Scholar 

  16. Aycicek A, Erel O, Kocyigit A. Decreased total antioxidant capacity and increased oxidative stress in passive smoker infants and their mothers. Pediatr Int. 2005;47:635–9.

    Article  CAS  PubMed  Google Scholar 

  17. Aycicek A, Erel O, Kocyigit A. Increased oxidative stress in infants exposed to passive smoking. Eur J Pediatr. 2005;164:775–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fayol L, Gulian JM, Dalmasso C, et al. Antioxidant status of neonates exposed in utero to tobacco smoke. Biol Neonate. 2005;87:121–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kosecik M, Erel O, Sevinc E, et al. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol. 2005;100:61–4.

    Article  PubMed  Google Scholar 

  20. Durak I, Elgun S, Kemal Bingol N, et al. Effects of cigarette smoking with different tar content on erythrocyte oxidant/antioxidant status. Addict Biol. 2002;7:255–8.

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Lu J, Liu S. Synergistic induction of hydroxyl radical-induced DNA singlestrand breaks by chromium (VI) compound and cigarette smoke solution. Mutat Res. 1999;440:109–17.

    Article  CAS  PubMed  Google Scholar 

  22. Frei B, Forte TM, Ames BN, et al. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Biochem J. 1991;277:133–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Harats D, Ben-Naim M, Dabach Y, et al. Cigarette smoking renders LDL susceptible to peroxidative modifications and enhanced metabolism by macrophages. Atherosclerosis. 1989;79:245–52.

    Article  CAS  PubMed  Google Scholar 

  24. McCall MR, van den Berg JJM, Kuypers FA, et al. Modification of LCAT activity and HDL structure. New links between cigarette smoke and coronary heart disease. Arterioscler Thromb. 1994;14:248–53.

    Article  CAS  PubMed  Google Scholar 

  25. Scheffler E, Wiest E, Woehrle J, et al. Smoking influences the atherogenic potential of low-density lipoprotein. Clin Invest. 1992;70:263–8.

    CAS  Google Scholar 

  26. Yokode M, Kita T, Arai H, et al. Cholesteryl ester accumulation in macrophages incubated with low density lipoprotein pretreated with cigarette smoke extract. Proc Natl Acad Sci U S A. 1988;85:2344–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Aycicek A, Varma M, Ahmet K, et al. Maternal active or passive smoking causes oxidative stress in placental tissue. Eur J Pediatr. 2011;170:645–51.

    Article  CAS  PubMed  Google Scholar 

  28. Bardy AH, Seppälä T, Lillsunde P, et al. Objectively measured tobacco exposure during pregnancy: neonatal effects and relation to maternal smoking. Br J Obstet Gynaecol. 1993;100:721–6.

    Article  CAS  PubMed  Google Scholar 

  29. Peacock JL, Cook DG, Carey IM, et al. Maternal cotinine level during pregnancy and birthweight for gestational age. Int J Epidemiol. 1998;27:647–56.

    Article  CAS  PubMed  Google Scholar 

  30. Florescu A, Ferrence R, Einarson TR, et al. Reference values for hair cotinine as a biomarker of active and passive smoking in women of reproductive age, pregnant women, children, and neonates: systematic review and meta-analysis. Ther Drug Monit. 2007;29:437–46.

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Stable EJ, Herrera B, Jacob 3rd P, et al. Nicotine metabolism and intake in black and white smokers. JAMA. 1998;280:152–6.

    Article  CAS  PubMed  Google Scholar 

  32. Paoletti L, Jardin B, Carpenter MJ, et al. Current status of tobacco policy and control. J Thorac Imaging. 2012;27:213–9.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Maritz GS, Mutemwa M. Tobacco smoking: patterns, health consequences for adults, and the long-term health of the offspring. Glob J Health Sci. 2012;4:62–75.

    PubMed  Google Scholar 

  34. Protano C, Vitali M. The new danger of thirdhand smoke: why passive smoking does not stop at secondhand smoke. Environ Health Perspect. 2011;119:A422.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Valenzuela A. The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress. Life Sci. 1991;48:301–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chelchowska M, Laskowska-Klita T, Leibschang J. The effect of tobacco smoking during pregnancy on concentration of malondialdehyde in blood of mothers and in umbilical cord blood. Ginekol Pol. 2005;76:960–5.

    PubMed  Google Scholar 

  37. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–9.

    Article  CAS  PubMed  Google Scholar 

  38. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37:277–85.

    Article  CAS  PubMed  Google Scholar 

  39. Miyazawa T. Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med. 1989;7:209–17.

    Article  CAS  PubMed  Google Scholar 

  40. Harma M, Harma M, Erel O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med Wkly. 2003;133:563–6.

    CAS  PubMed  Google Scholar 

  41. Harma M, Harma M, Erel O. Oxidative stress in women with preeclampsia. Am J Obstet Gynecol. 2005;192:656–7.

    Article  PubMed  Google Scholar 

  42. Kamal A, Gomaa A, Khafif M, et al. Plasma lipid peroxides among workers exposed to silica or asbestos dusts. Environ Res. 1989;49:173–80.

    Article  CAS  PubMed  Google Scholar 

  43. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103–11.

    Article  CAS  PubMed  Google Scholar 

  44. Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27.

    Article  CAS  PubMed  Google Scholar 

  45. Erel O. Automated measurement of serum ferroxidase activity. Clin Chem. 1998;44:2313–9.

    CAS  PubMed  Google Scholar 

  46. Arab K, Steghens JP. Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal Biochem. 2004;325:158–63.

    Article  CAS  PubMed  Google Scholar 

  47. Kim DH, Suh YS, Mun KC. Tissue levels of malondialdehyde after passive smoke exposure of rats for a 24-week period. Nicotine Tob Res. 2004;6:1039–42.

    Article  CAS  PubMed  Google Scholar 

  48. Cross CE, O’Neill CA, Reznick AZ, et al. Cigarette smoke oxidation of human plasma constituents. Ann N Y Acad Sci. 1993;686:72–89; discussion 89–90.

    Article  CAS  PubMed  Google Scholar 

  49. Schwertner HA. Association of smoking and low serum bilirubin antioxidant. Atherosclerosis. 1998;136:383–7.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshie Y, Ohshima H. Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide. Carcinogenesis. 1997;18:1359–63.

    Article  CAS  PubMed  Google Scholar 

  51. Argüelles S, Machado MJ, Ayala A, et al. Correlation between circulating biomarkers of oxidative stress of maternal and umbilical cord blood at birth. Free Radic Res. 2006;40:565–70.

    Article  PubMed  Google Scholar 

  52. Rossner Jr P, Milcova A, Libalova H, et al. Biomarkers of exposure to tobacco smoke and environmental pollutants in mothers and their transplacental transfer to the foetus. Part II. Oxidative damage. Mutat Res. 2009;669:20–6.

    Article  CAS  PubMed  Google Scholar 

  53. Daube H, Scherer G, Riedel K, et al. DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status. J Cancer Res Clin Oncol. 1997;123:141–51.

    Article  CAS  PubMed  Google Scholar 

  54. Yin B, Whyatt RM, Perera FP, et al. Determination of 8-hydroxydeoxyguanosine by immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic Biol Med. 1995;18:1023–32.

    Article  CAS  PubMed  Google Scholar 

  55. Sbrana E, Suter MA, Abramovici AR, et al. Maternal tobacco use is associated with increased markers of oxidative stress in the placenta. Am J Obstet Gynecol. 2011;205:246.e1–7.

    Article  Google Scholar 

  56. Polidori MC, Mecocci P, et al. Cigarette smoking cessation increases plasma levels of several antioxidant micronutrients and improves resistance towards oxidative challenge. Br J Nutr. 2003;90:147–50.

    Article  CAS  PubMed  Google Scholar 

  57. Pasalic D, Marinkovic N, Feher-Turkovic L. Uric acid as one of the important factors in multifactorial disorders – facts and controversies. Biochem Med (Zagreb). 2012;22:63–75.

    Article  CAS  Google Scholar 

  58. Sidle EH, Casselman R, Smith GN. Effect of cigarette smoke on placental antioxidant enzyme expression. Am J Physiol Regul Integr Comp Physiol. 2007;293:R754–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dalamaga AL, Agroyannis B, Vitoratos N, et al. Effect of smoking on ceruloplasmin and its ferroxidase activity in pregnant women. Gynecol Obstet Invest. 1996;42:13–5.

    Article  CAS  PubMed  Google Scholar 

  60. Wisborg K, Kesmodel U, Henriksen TB, et al. Exposure to tobacco smoke in utero and the risk of stillbirth and death in the first year of life. Am J Epidemiol. 2001;154:322–7.

    Article  CAS  PubMed  Google Scholar 

  61. Milnerowicz H, Slowińska M. Concentration of metals, ceruloplasmin, metallothionein and the activity of N-acetyl-beta-D-glucosaminidase and gamma-glutamyltransferase in pregnant women who smoke and in those environmentally exposed to tobacco smoke and in their infants. Part I. Int J Occup Med Environ Health. 1997;10:187–202.

    CAS  PubMed  Google Scholar 

  62. Sen B, Mahadevan B, Demarini DM. Transcriptional responses to complex mixtures a review. Mutat Res. 2007;636:144–77.

    Article  CAS  PubMed  Google Scholar 

  63. Park EM, Park YM, Gwak YS. Oxidative damage in tissues of rats exposed to cigarette smoke. Free Radic Biol Med. 1998;25:79–86.

    Article  CAS  PubMed  Google Scholar 

  64. Yildiz L, Kayaoglu N, Aksoy H. The changes of superoxide dismutase, catalase and glutathione peroxidase activities in erythrocytes of active and passive smokers. Clin Chem Lab Med. 2002;40:612.

    CAS  PubMed  Google Scholar 

  65. Funato Y, Miki H. Redox regulation of Wnt signalling via nucleoredoxin. Free Radic Res. 2010;44:379–88.

    Article  CAS  PubMed  Google Scholar 

  66. Russo M, Cocco S, Secondo A, Adornetto A, Bassi A, Nunziata A, et al. Cigarette smoke condensate causes a decrease of the gene expression of Cu-Zn superoxide dismutase, Mn superoxide dismutase, glutathione peroxidase catalase, and free radical-induced cell Injury in SH-SY5Y human neuroblastoma cells. Neurotox Res. 2009;19:49–54.

    Article  PubMed  Google Scholar 

  67. Villablanca AC, Pinkerton KE, Rutledge JC. Maternal and neonatal exposure to environmental tobacco smoke targets pro-inflammatory genes in neonatal arteries. J Cardiovasc Transl Res. 2010;3:696–703.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Westbrook D, Anderson P, Pinkerton K, Ballinger S. Perinatal tobacco smoke exposure increases vascular oxidative stress and mitochondrial damage in non-human primates. Cardiovasc Toxicol. 2010;10:216–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Berenson GS, Srinivasan SR. Prevention of atherosclerosis in childhood. Lancet. 1999;354:1223–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aycicek M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aycicek, A. (2014). Tobacco Smoking and Oxidative Stress in Pregnancy. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_4

Download citation

Publish with us

Policies and ethics