Skip to main content
Log in

Effects of arginine treatment on nutrition, growth and urea cycle function in seven Japanese boys with late-onset ornithine transcarbamylase deficiency

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate the effects of arginine on nutrition, growth and urea cycle function in boys with late-onset ornithine transcarbamylase deficiency (OTCD). Seven Japanese boys with late-onset OTCD enrolled in this study resumed arginine treatment after the cessation of this therapy for a few years. Clinical presentations such as vomiting and unconsciousness, plasma amino acids and urinary orotate excretion were followed chronologically to evaluate urea cycle function and protein synthesis with and without this therapy. In addition to height and body weight, blood levels of proteins, lipids, growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein -3 (IGFBP-3) were monitored.

Results

The frequency of hyperammonemic attacks and urinary orotate excretion decreased significantly following the resumption of arginine treatment. Despite showing no marked change in body weight, height increased gradually. Extremely low plasma arginine increased to normal levels, while plasma glutamine and alanine levels decreased considerably. Except for a slight increase in high-density lipoprotein cholesterol level, blood levels of markers for nutrition did not change. In contrast, low serum IGF-I and IGFBP-3 levels increased to age-matched control levels, and normal urinary GH secretion became greater than the level observed in the controls.

Conclusion

Arginine treatment is able to reduces attacks of hyperammonemia in boys with late-onset OTCD and to increase their growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FFA:

Free fatty acids

GH:

Growth hormone

IGF-I:

Insulin-like growth factor-I

IGFBP-3:

Insulin-like growth factor binding protein-3

OTCD:

Ornithine transcarbamylase deficiency

TKB:

Total ketone body

TP:

Total protein

References

  1. Batshaw ML, MacArthur RB, Tuchman M (2001) Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr 138[Suppl 1]:S46–54, discussion S54–S55

    PubMed  CAS  Google Scholar 

  2. Berry GT, Steiner RD (2001) Long-term management of patients with urea cycle disorders. J Pediatr 138[Suppl]:S56–S60, discussion S60–S61

    PubMed  CAS  Google Scholar 

  3. Bonnefont JP, Specola NB, Vassault A, Lombes A, Ogier H, de Klerk JB, Munnich A, Coude M, Paturneau-Jouas M, Saudubray JM (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo-and hyperketotic states. Eur J Pediatr 150:80–85

    Article  PubMed  CAS  Google Scholar 

  4. Brusilow SW (1984) Arginine, an indispensable amino acid for patients with inborn errors of metabolism. J Clin Invest 117:2144–2148

    Article  Google Scholar 

  5. Brusilow SW, Hauser E (1989) Simple method of measurement of orotate and orotidine in urine. J Chromatogr 493:388–391

    Article  PubMed  CAS  Google Scholar 

  6. Brusilow SW, Horwich AL (2001) Urea cycle enzymes. In: Scriver CR, Baudet AL, Valle D, Sly WS. The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New-York, pp 1909–1964

    Google Scholar 

  7. Carey GP, Kime Z, Rogers QR, Morris JG, Hargrove D, Buffington CA, Brusilow SW (1987) An arginine-deficient diet in humans does not evoke hyperammonemia or orotic aciduria. J Nutr 117:1734–1739

    PubMed  CAS  Google Scholar 

  8. Counts DR, Gwirtsman H, Carlsson LM, Lesem M, Cutler GB Jr (1992) The effect of anorexia nervosa and refeeding on growth hormone-binding proteins, the insulin-like growth factors (IGFs), and the IGF-binding proteins. J Clin Endocrinol Metab 75:762–767

    Article  PubMed  CAS  Google Scholar 

  9. Czarnecki GL, Baker DH (1984) Urea cycle function in the dog with emphasis on the role of arginine. J Nutr 114:581–590

    PubMed  CAS  Google Scholar 

  10. Donn SM, Thoene JG (1985) Prospective prevention of neonatal hyperammonemia in arginosuccinic aciduria by arginine therapy. J Inherit Metab Dis 8:18–20

    Article  PubMed  CAS  Google Scholar 

  11. Duran M, Wadman SK (1987) Chemical diagnosis of inherited defects of fatty acid metabolism and ketogenesis (a review). Enzyme 38:115–123

    PubMed  CAS  Google Scholar 

  12. Fingerhut R, Roschinger W, Muntau AC, Dame T, Kreischer J, Arnecke R, Superti-Furga A, Troxler H, Liebl B, Olgemoller B, Roscher AA (2001) Hepatic carnitine palmitoyltransferase I deficiency: acylcarnitine profiles in blood spots are highly specific. Clin Chem 47:1763–1768

    PubMed  CAS  Google Scholar 

  13. Finkelstein JE, Hauser ER, Leonard CO, Brusilow SW (1990) Late-onset ornithine transcarbamylase deficiency in male patients. J Pediatr 117:897–902

    Article  PubMed  CAS  Google Scholar 

  14. Gianotti L, Maccario M, Lanfranco F, Ramunni J, Di Vito L, Grottoli S, Muller EE, Chigo E, Arvat E (2000) Arginine counteracts the inhibitory effect of recombinant human insulin-like growth factor I on the somatotroph responsiveness to growth hormone-releasing hormone in humans. J Clin Endocrinol Metab 85:3604–3608

    Article  PubMed  CAS  Google Scholar 

  15. Gianotti L, Pincelli AI, Scacchi M, Rolla M, Bellitti D, Arvat E, Lanfranco F, Torsello A, Ghigo E, Cavagnini F, Muller EE (2000) Effects of recombinant human insulin-like growth factor I administration on spontaneous and growth hormone (GH)-releasing hormone-stimulated GH secretion in anorexia nervosa. J Clin Endocrinol Metab 85:2805–2809

    Article  PubMed  CAS  Google Scholar 

  16. Girard J, Fischer-Wasels T (1990) Measurement of urinary growth hormone. A noninvasive method to assess the growth hormone status. Horm Res 33[Suppl 4]:12–18

    Article  PubMed  CAS  Google Scholar 

  17. Grottoli S, Gasco V, Ragazzoni F, Ghigo E (2003) Hormonal diagnosis of GH hypersecretory states. J Endocrinol Invest 26:27–35

    PubMed  CAS  Google Scholar 

  18. Hanew K, Utsumi A (2002) The role of endogenous GHRH in arginine-, insulin-, clonidine- and l-dopa-induced GH release in normal subjects. Eur J Endocrinol 146:197–202

    Article  PubMed  CAS  Google Scholar 

  19. Hourd P, Edwards R (1994) Current methods for the measurement of growth hormone in urine (a review). Clin Endocrinol (Oxford) 40:155–170

    Article  CAS  Google Scholar 

  20. Leonard JV (2001) The nutritional management of urea cycle disorders. J Pediatr 138[Suppl 1]:S40–S44, discussion S44–S45

    PubMed  CAS  Google Scholar 

  21. Maestri NE, Brusilow SW, Clissold DB, Bassett SS (1996) Long-term treatment of girls with ornithine transcarbamylase deficiency. N Engl J Med 335:855–859

    Article  PubMed  CAS  Google Scholar 

  22. Maestri NE, Clissold DB, Brusilow SW (1999) Neonatal onset ornithine transcarbamylase deficiency: a retrospective analysis. J Pediatr 134:268–272

    Article  PubMed  CAS  Google Scholar 

  23. Merimee TJ, Rabinowtitz D, Fineberg SE (1969) Arginine-initiated release of human growth hormone. Factors modifying the response in normal man. N Eng J Med 280:1434–1438

    Article  CAS  Google Scholar 

  24. Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED (1984) Neurological outcome in children with inborn errors of urea synthesis: outcome of urea-cycle enzymopathies. N Engl J Med 310:1500–1505

    Article  PubMed  CAS  Google Scholar 

  25. Nagasaka H, Komatsu H, Ohura T, Sogo T, Inui A, Yorifuji T, Kei Murayama, Masaki Takayanagi, Hideaki Kikuta, Kunihiko Kobayashi (2004) Nitric oxide synthesis in ornithine transcarbamylase deficiency: possible involvement of low NO synthesis in clinical manifestations of urea cycle defect. J Pediatr 145:259–262

    Article  PubMed  CAS  Google Scholar 

  26. Olpin SE (2004) Implications of impaired ketogenesis in fatty acid oxidation disorders (a review). Prostaglandins Leukot Essent Fatty Acids 70:293–308

    Article  PubMed  CAS  Google Scholar 

  27. Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844

    PubMed  CAS  Google Scholar 

  28. Uchino T, Endo F, Matsuda I (1998) Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan. J Inherit Metab Dis 21[Suppl 1]:151–159

    Article  PubMed  Google Scholar 

  29. Widhalm K, Koch S, Scheibenreiter S, Knoll E, Colombo JP, Bachmann C, Thalhammer O (1992) Long-term follow-up of 12 patients with the late-onset variant of arginisuccinic acid lyase deficiency: no impairment of intellectual and psychomotor development during therapy. Pediatrics 89:1182–1184

    PubMed  CAS  Google Scholar 

  30. Wilcken B (2004) Problems in the management of urea cycle disorders. Mol Genet Metab 81[Suppl 1]:S86–S91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Nagasaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaka, H., Yorifuji, T., Murayama, K. et al. Effects of arginine treatment on nutrition, growth and urea cycle function in seven Japanese boys with late-onset ornithine transcarbamylase deficiency. Eur J Pediatr 165, 618–624 (2006). https://doi.org/10.1007/s00431-006-0143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-006-0143-y

Keywords

Navigation