Skip to main content

Advertisement

Log in

Proteomics dedicated to biofilmology: What have we learned from a decade of research?

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though these investigations have been largely used for biofilm studies in the last decades, they represent, however, a very low percentage of proteomics works performed up to now. Such approaches have offered new targets for combating microbial biofilms by providing a comprehensive quantitative and qualitative overview of their protein cell content. Herein, we summarized the state of the art in knowledge about biofilm physiology after one decade of proteomic analysis. In a second part, we highlighted missing research tracks for the next decade, emphasizing the emergence of posttranslational modifications in proteomic studies stemming from recent advances in mass spectrometry-based proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MS:

Mass spectrometry

2D-E:

Two-dimensional electrophoresis

CF:

Cystic fibrosis

PTMs:

Posttranslational modifications

EPS:

Extracellular polymeric substances

OMVs:

Outer membrane vesicles

QS:

Quorum sensing

AHLs:

Acyl homoserine lactones

OMP:

Outer membrane protein

References

  1. Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27(4):619–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105

    CAS  PubMed  Google Scholar 

  3. Zegans ME, Becker HI, Budzik J, O’Toole G (2002) The role of bacterial biofilms in ocular infections. DNA Cell Biol 21(5–6):415–420. doi:10.1089/10445490260099700

    Article  CAS  PubMed  Google Scholar 

  4. Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28(11):1062–1068

    CAS  PubMed  Google Scholar 

  5. Zottola EA, Sasahara KC (1994) Microbial biofilms in the food processing industry—Should they be a concern? Int J Food Microbiol 23(2):125–148. doi: 10.1016/0168-1605(94)90047-7

    Article  CAS  PubMed  Google Scholar 

  6. Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1–2):9–27. doi:10.1016/S0168-1605(98)00060-9

    Article  CAS  PubMed  Google Scholar 

  7. Schlegelova J, Karpiskova S (2007) Microbial biofilms in the food industry. Epidemiol Mikrobiol Imunol 56(1):14–19

    CAS  PubMed  Google Scholar 

  8. Rodrigues CM, Takita MA, Coletta-Filho HD, Olivato JC, Caserta R, Machado MA, de Souza AA (2008) Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Appl Microbiol Biotechnol 77(5):1145–1157. doi:10.1007/s00253-007-1232-1

    Article  CAS  PubMed  Google Scholar 

  9. Akuzov D, Brummer F, Vladkova T (2013) Some possibilities to reduce the biofilm formation on transparent siloxane coatings. Colloids Surf B Biointerfaces 104:303–310. doi:10.1016/j.colsurfb.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  10. Dussart L, Dupont JP, Zimmerlin I, Lacroix M, Saiter JM, Junter GA, Jouenne T (2003) Occurrence of sessile Pseudomonas oryzihabitans from a karstified chalk aquifer. Water Res 37(7):1593–1600. doi:10.1016/S0043-1354(02)00555-9

    Article  CAS  PubMed  Google Scholar 

  11. Abram F, Gunnigle E, O’Flaherty V (2009) Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis 30(23):4149–4151. doi:10.1002/elps.200900474

    Article  CAS  PubMed  Google Scholar 

  12. Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94. doi:10.1016/j.biortech.2012.02.110

    Article  CAS  PubMed  Google Scholar 

  13. Sarro MI, Garcia AM, Moreno DA (2005) Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water. Int Microbiol 8(3):223–230. doi:10.1007/s10295-007-0215-7

    CAS  PubMed  Google Scholar 

  14. Katuri KP, Enright AM, O’Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry 87:164–171. doi:10.1016/j.bioelechem.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  15. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  16. Oosthuizen MC, Steyn B, Lindsay D, Brozel VS, von Holy A (2001) Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol Lett 194(1):47–51. doi:10.1111/j.1574-6968.2001.tb09444.x

    Article  CAS  PubMed  Google Scholar 

  17. Steyn B, Oosthuizen MC, MacDonald R, Theron J, Brozel VS (2001) The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 1(7):871–879. doi:10.1002/1615-9861(200107)1:7<871:AID-PROT871>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  18. Pandhal J, Ow SY, Noirel J, Wright PC (2011) Improving N-glycosylation efficiency in Escherichia coli using shotgun proteomics, metabolic network analysis, and selective reaction monitoring. Biotechnol Bioeng 108(4):902–912. doi:10.1002/bit.23011

    Article  CAS  PubMed  Google Scholar 

  19. Barry RC, Young MJ, Stedman KM, Dratz EA (2006) Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2. Electrophoresis 27(14):2970–2983. doi:10.1002/elps.200500851

    Article  CAS  PubMed  Google Scholar 

  20. Chao TC, Kalinowski J, Nyalwidhe J, Hansmeier N (2010) Comprehensive proteome profiling of the Fe(III)-reducing myxobacterium Anaeromyxobacter dehalogenans 2CP-C during growth with fumarate and ferric citrate. Proteomics 10(8):1673–1684. doi:10.1002/pmic.200900687

    Article  CAS  PubMed  Google Scholar 

  21. Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome em leader or the cart before the horse. Biotechnol Adv 22(8):633–658. doi:10.1016/j.biotechadv.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  22. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  23. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  24. Staes A, Demol H, Van Damme J, Martens L, Vandekerckhove J, Gevaert K (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3(4):786–791

    Article  CAS  PubMed  Google Scholar 

  25. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7(3):340–350. doi:10.1002/pmic.200600422

    Article  CAS  PubMed  Google Scholar 

  26. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553. doi:10.1002/pmic.201000553

    Article  CAS  PubMed  Google Scholar 

  27. Park SS, Wu WW, Zhou Y, Shen RF, Martin B, Maudsley S (2012) Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC). J Proteomics 75(12):3720–3732. doi:10.1016/j.jprot.2012.04.035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Park AJ, Murphy K, Krieger JR, Brewer D, Taylor P, Habash M, Khursigara CM (2014) A temporal examination of the planktonic and biofilm proteome of whole cell Pseudomonas aeruginosa PAO1 using quantitative mass spectrometry. Mol Cell Proteomics. doi:10.1074/mcp.M113.033985

    Google Scholar 

  29. Phillips NJ, Steichen CT, Schilling B, Post DM, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW (2012) Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS ONE 7(6):e38303. doi:10.1371/journal.pone.0038303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Carvalhais V, Cerca N, Vilanova M, Vitorino R (2015) Proteomic profile of dormancy within Staphylococcus epidermidis biofilms using iTRAQ and label-free strategies. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6434-3

    Google Scholar 

  31. Zhao YL, Zhou YH, Chen JQ, Huang QY, Han Q, Liu B, Cheng GD, Li YH (2015) Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S. suis in vitro. J Proteomics 116:1–14. doi:10.1016/j.jprot.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  32. Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S (2006) Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. Microbiology 152(Pt 9):2801–2807. doi:10.1099/mic.0.29060-0

    Article  CAS  PubMed  Google Scholar 

  33. Vilain S, Brozel VS (2006) Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J Proteome Res 5(8):1924–1930. doi:10.1021/pr050402b

    Article  CAS  PubMed  Google Scholar 

  34. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209. doi:10.1146/annurev.micro.56.012302.160705

    Article  CAS  PubMed  Google Scholar 

  35. Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC (2002) A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol Lett 215(1):7–14. doi:10.1111/j.1574-6968.2002.tb11363.x

    Article  CAS  PubMed  Google Scholar 

  36. Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Parvatiyar K, Kamani MC, Allen HL, DeKievit TR, Gardner PR, Schwab U, Rowe JJ, Iglewski BH, McDermott TR, Mason RP, Wozniak DJ, Hancock RE, Parsek MR, Noah TL, Boucher RC, Hassett DJ (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3(4):593–603. doi:10.1016/S1534-5807(02)00295-2

    Article  CAS  PubMed  Google Scholar 

  37. Guina T, Purvine SO, Yi EC, Eng J, Goodlett DR, Aebersold R, Miller SI (2003) Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci USA 100(5):2771–2776. doi:10.1073/pnas.0435846100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Orme R, Douglas CW, Rimmer S, Webb M (2006) Proteomic analysis of Escherichia coli biofilms reveals the overexpression of the outer membrane protein OmpA. Proteomics 6(15):4269–4277. doi:10.1002/pmic.200600193

    Article  CAS  PubMed  Google Scholar 

  39. Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188(12):4312–4320. doi:10.1128/JB.01975-05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mikkelsen H, Duck Z, Lilley KS, Welch M (2007) Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189(6):2411–2416. doi:10.1128/JB.01687-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Arevalo-Ferro C, Hentzer M, Reil G, Gorg A, Kjelleberg S, Givskov M, Riedel K, Eberl L (2003) Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol 5(12):1350–1369. doi:10.1046/j.1462-2920.2003.00532.x

    Article  CAS  PubMed  Google Scholar 

  42. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326. doi:10.1128/JB.186.21.7312-7326.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Vilain S, Cosette P, Hubert M, Lange C, Junter GA, Jouenne T (2004) Comparative proteomic analysis of planktonic and immobilized Pseudomonas aeruginosa cells: a multivariate statistical approach. Anal Biochem 329(1):120–130. doi:10.1016/j.ab.2004.02.014

    Article  CAS  PubMed  Google Scholar 

  44. Seyer D, Cosette P, Siroy A, Dé E, Lenz C, Vaudry H, Coquet L, Jouenne T (2005) Proteomic comparison of outer membrane protein patterns of sessile and planktonic Pseudomonas aeruginosa cells. Biofilms 2(01):27–36. doi:10.1017/S1479050505001638

    Article  Google Scholar 

  45. Arevalo-Ferro C, Reil G, Gorg A, Eberl L, Riedel K (2005) Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 28(2):87–114. doi:10.1016/j.syapm.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  46. Thompson MR, Chourey K, Froelich JM, Erickson BK, VerBerkmoes NC, Hettich RL (2008) Experimental approach for deep proteome measurements from small-scale microbial biomass samples. Anal Chem 80(24):9517–9525. doi:10.1021/ac801707s

    Article  CAS  PubMed  Google Scholar 

  47. Mikkelsen H, Bond NJ, Skindersoe ME, Givskov M, Lilley KS, Welch M (2009) Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. Microbiology 155(Pt 3):687–698. doi:10.1099/mic.0.025551-0

    Article  CAS  PubMed  Google Scholar 

  48. Nigaud Y, Cosette P, Collet A, Song PC, Vaudry D, Vaudry H, Junter GA, Jouenne T (2010) Biofilm-induced modifications in the proteome of Pseudomonas aeruginosa planktonic cells. Biochim Biophys Acta 1804(4):957–966. doi:10.1016/j.bbapap.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  49. Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chavez FP (2010) New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 10:7. doi:10.1186/1471-2180-10-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Benamara H, Rihouey C, Jouenne T, Alexandre S (2011) Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim Biophys Acta 1808(1):98–105. doi:10.1016/j.bbamem.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  51. Toyofuku M, Roschitzki B, Riedel K, Eberl L (2012) Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 11(10):4906–4915. doi:10.1021/pr300395j

    Article  CAS  PubMed  Google Scholar 

  52. Petrova OE, Schurr JR, Schurr MJ, Sauer K (2012) Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol Microbiol 86(4):819–835. doi:10.1111/mmi.12018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Nesper J, Reinders A, Glatter T, Schmidt A, Jenal U (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteomics 75(15):4874–4878. doi:10.1016/j.jprot.2012.05.033

    Article  CAS  PubMed  Google Scholar 

  54. Chellappa ST, Maredia R, Phipps K, Haskins WE, Weitao T (2013) Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation. Res Microbiol 164(10):1019–1027. doi:10.1016/j.resmic.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  55. Collet A, Cosette P, Beloin C, Ghigo JM, Rihouey C, Lerouge P, Junter GA, Jouenne T (2008) Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm. J Proteome Res 7(11):4659–4669. doi:10.1021/pr8001723

    Article  CAS  PubMed  Google Scholar 

  56. Mukherjee J, Ow SY, Noirel J, Biggs CA (2011) Quantitative protein expression and cell surface characteristics of Escherichia coli MG1655 biofilms. Proteomics 11(3):339–351. doi:10.1002/pmic.201000386

    Article  CAS  PubMed  Google Scholar 

  57. Resch A, Leicht S, Saric M, Pasztor L, Jakob A, Gotz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6(6):1867–1877. doi:10.1002/pmic.200500531

    Article  CAS  PubMed  Google Scholar 

  58. Veenstra GJ, Cremers FF, van Dijk H, Fleer A (1996) Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J Bacteriol 178(2):537–541

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Wagner C, Kondella K, Bernschneider T, Heppert V, Wentzensen A, Hansch GM (2003) Post-traumatic osteomyelitis: analysis of inflammatory cells recruited into the site of infection. Shock 20(6):503–510. doi:10.1097/01.shk.0000093542.78705.e3

    Article  PubMed  Google Scholar 

  60. Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74(1):488–496. doi:10.1128/IAI.74.1.488-496.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Batzilla CF, Rachid S, Engelmann S, Hecker M, Hacker J, Ziebuhr W (2006) Impact of the accessory gene regulatory system (Agr) on extracellular proteins, codY expression and amino acid metabolism in Staphylococcus epidermidis. Proteomics 6(12):3602–3613. doi:10.1002/pmic.200500732

    Article  CAS  PubMed  Google Scholar 

  62. Kong KF, Vuong C, Otto M (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296(2–3):133–139. doi:10.1016/j.ijmm.2006.01.042

    Article  CAS  PubMed  Google Scholar 

  63. Qin Z, Yang X, Yang L, Jiang J, Ou Y, Molin S, Qu D (2007) Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol 56(Pt 1):83–93. doi:10.1099/jmm.0.46799-0

    Article  CAS  PubMed  Google Scholar 

  64. Brooks JL, Jefferson KK (2012) Staphylococcal biofilms: quest for the magic bullet. Adv Appl Microbiol 81:63–87. doi:10.1016/B978-0-12-394382-8.00002-2

    Article  CAS  PubMed  Google Scholar 

  65. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33(26):5967–5982. doi:10.1016/j.biomaterials.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  66. Otto M (2014) Staphylococcus epidermidis pathogenesis. Methods Mol Biol 1106:17–31. doi:10.1007/978-1-62703-736-5_2

    Article  CAS  PubMed  Google Scholar 

  67. McNeill K, Hamilton IR (2004) Effect of acid stress on the physiology of biofilm cells of Streptococcus mutans. Microbiology 150(Pt 3):735–742

    Article  CAS  PubMed  Google Scholar 

  68. Rathsam C, Eaton RE, Simpson CL, Browne GV, Valova VA, Harty DW, Jacques NA (2005) Two-dimensional fluorescence difference gel electrophoretic analysis of Streptococcus mutans biofilms. J Proteome Res 4(6):2161–2173. doi:10.1021/pr0502471

    Article  CAS  PubMed  Google Scholar 

  69. Khan AU, Islam B, Khan SN, Akram M (2011) A proteomic approach for exploring biofilm in Streptococcus mutans. Bioinformation 5(10):440–445

    Article  PubMed Central  PubMed  Google Scholar 

  70. Li J, Wang W, Wang Y, Zeng AP (2013) Two-dimensional gel-based proteomic of the caries causative bacterium Streptococcus mutans UA159 and insight into the inhibitory effect of carolacton. Proteomics 13(23–24):3470–3477. doi:10.1002/pmic.201300077

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee PK, Chandra J (2004) Candida biofilm resistance. Drug Resist Updates 7(4–5):301–309. doi:10.1016/j.drup.2004.09.002

    Article  CAS  Google Scholar 

  72. Chandra J, Zhou G, Ghannoum MA (2005) Fungal biofilms and antimycotics. Curr Drug Targets 6(8):887–894

    Article  CAS  PubMed  Google Scholar 

  73. Muszkieta L, Beauvais A, Pahtz V, Gibbons JG, Anton Leberre V, Beau R, Shibuya K, Rokas A, Francois JM, Kniemeyer O, Brakhage AA, Latge JP (2013) Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches. Front Microbiol 4:13. doi:10.3389/fmicb.2013.00013

    Article  PubMed Central  PubMed  Google Scholar 

  74. Pierce CG, Thomas DP, Lopez-Ribot JL (2009) Effect of tunicamycin on Candida albicans biofilm formation and maintenance. J Antimicrob Chemother 63(3):473–479. doi:10.1093/jac/dkn515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Martinez-Gomariz M, Perumal P, Mekala S, Nombela C, Chaffin WL, Gil C (2009) Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics 9(8):2230–2252. doi:10.1002/pmic.200700594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP (2010) Proteomics of drug resistance in Candida glabrata biofilms. Proteomics 10(7):1444–1454. doi:10.1002/pmic.200900611

    Article  CAS  PubMed  Google Scholar 

  77. Planchon S, Chambon C, Desvaux M, Chafsey I, Leroy S, Talon R, Hebraud M (2007) Proteomic analysis of cell envelope from Staphylococcus xylosus C2a, a coagulase-negative staphylococcus. J Proteome Res 6(9):3566–3580. doi:10.1021/pr070139+

    Article  CAS  PubMed  Google Scholar 

  78. Malen H, Berven FS, Fladmark KE, Wiker HG (2007) Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7(10):1702–1718. doi:10.1002/pmic.200600853

    Article  PubMed  CAS  Google Scholar 

  79. Hansmeier N, Chao TC, Kalinowski J, Puhler A, Tauch A (2006) Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics 6(8):2465–2476. doi:10.1002/pmic.200500360

    Article  CAS  PubMed  Google Scholar 

  80. Khemiri A, Galland A, Vaudry D, Chan Tchi Song P, Vaudry H, Jouenne T, Cosette P (2008) Outer-membrane proteomic maps and surface-exposed proteins of Legionella pneumophila using cellular fractionation and fluorescent labelling. Anal Bioanal Chem 390(7):1861–1871. doi:10.1007/s00216-008-1923-1

    Article  CAS  PubMed  Google Scholar 

  81. Calvo E, Pucciarelli MG, Bierne H, Cossart P, Albar JP, Garcia-Del Portillo F (2005) Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics 5(2):433–443. doi:10.1002/pmic.200400936

    Article  CAS  PubMed  Google Scholar 

  82. Cao Y, Bazemore-Walker CR (2013) Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus. J Proteomics. doi:10.1016/j.jprot.2013.08.011

    PubMed Central  Google Scholar 

  83. Solis N, Parker BL, Kwong SM, Robinson G, Firth N, Cordwell SJ (2014) Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach. J Proteome Res. doi:10.1021/pr500107p

    Google Scholar 

  84. Solis N, Parker BL, Kwong SM, Robinson G, Firth N, Cordwell SJ (2014) Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach. J Proteome Res 13(6):2954–2972. doi:10.1021/pr500107p

    Article  CAS  PubMed  Google Scholar 

  85. Serra DO, Lucking G, Weiland F, Schulz S, Gorg A, Yantorno OM, Ehling-Schulz M (2008) Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis. Proteomics 8(23–24):4995–5010. doi:10.1002/pmic.200800218

    Article  CAS  PubMed  Google Scholar 

  86. Sochorova Z, Petrackova D, Sitarova B, Buriankova K, Bezouskova S, Benada O, Kofronova O, Janecek J, Halada P, Weiser J (2014) Morphological and proteomic analysis of early stage air-liquid interface biofilm formation in Mycobacterium smegmatis. Microbiology 160(Pt 7):1346–1356. doi:10.1099/mic.0.076174-0

    Article  CAS  PubMed  Google Scholar 

  87. Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37(6):849–871. doi:10.1111/1574-6976.12018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183(22):6579–6589. doi:10.1128/JB.183.22.6579-6589.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Fletcher JM, Nair SP, Ward JM, Henderson B, Wilson M (2001) Analysis of the effect of changing environmental conditions on the expression patterns of exported surface-associated proteins of the oral pathogen Actinobacillus actinomycetemcomitans. Microb Pathog 30(6):359–368. doi:10.1006/mpat.2000.0439

    Article  CAS  PubMed  Google Scholar 

  90. Ang CS, Veith PD, Dashper SG, Reynolds EC (2008) Application of 16O/18O reverse proteolytic labeling to determine the effect of biofilm culture on the cell envelope proteome of Porphyromonas gingivalis W50. Proteomics 8(8):1645–1660. doi:10.1002/pmic.200700557

    Article  CAS  PubMed  Google Scholar 

  91. Planchon S, Desvaux M, Chafsey I, Chambon C, Leroy S, Hebraud M, Talon R (2009) Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. J Proteome Res 8(4):1797–1809. doi:10.1021/pr8004056

    Article  CAS  PubMed  Google Scholar 

  92. Guegan C, Garderes J, Le Pennec G, Gaillard F, Fay F, Linossier I, Herry JM, Fontaine MN, Rehel KV (2014) Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surf B Biointerfaces 114:193–200. doi:10.1016/j.colsurfb.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  93. Gilmore JM, Washburn MP (2010) Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics 73(11):2078–2091. doi:10.1016/j.jprot.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  94. Dunne WM Jr (2002) Bacterial adhesion: Seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Neu TR, Lawrence JR (2015) Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends Microbiol. doi:10.1016/j.tim.2014.12.010

    PubMed  Google Scholar 

  96. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Vilain S, Cosette P, Zimmerlin I, Dupont JP, Junter GA, Jouenne T (2004) Biofilm proteome: Homogeneity or versatility? J Proteome Res 3(1):132–136

    Article  CAS  PubMed  Google Scholar 

  98. Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K (2006) Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 188(7):2325–2335. doi:10.1128/JB.188.7.2325-2335.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Asakura H, Yamasaki M, Yamamoto S, Igimi S (2007) Deletion of peb4 gene impairs cell adhesion and biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett 275(2):278–285. doi:10.1111/j.1574-6968.2007.00893.x

    Article  CAS  PubMed  Google Scholar 

  100. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49(4):905–918. doi:10.1046/j.1365-2958.2003.03615.x

    Article  CAS  PubMed  Google Scholar 

  101. Petrova OE, Sauer K (2010) The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 192(20):5275–5288. doi:10.1128/JB.00387-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Deng DM, Buijs MJ, Ten Cate JM (2004) The effects of substratum on the pH response of Streptococcus mutans biofilms and on the susceptibility to 0.2% chlorhexidine. Eur J Oral Sci 112(1):42–47. doi:10.1111/j.0909-8836.2004.00100.x

    Article  CAS  PubMed  Google Scholar 

  103. Chaturongkasumrit Y, Takahashi H, Keeratipibul S, Kuda T, Kimura B (2011) The effect of polyesterurethane belt surface roughness on Listeria monocytogenes biofilm formation and its cleaning efficiency. Food Control 22(12):1893–1899. doi:10.1016/j.foodcont.2011.04.032

    Article  CAS  Google Scholar 

  104. Schlisselberg DB, Yaron S (2013) The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine. Food Microbiol 35(1):65–72. doi:10.1016/j.fm.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  105. Gallaher TK, Wu S, Webster P, Aguilera R (2006) Identification of biofilm proteins in non-typeable Haemophilus influenzae. BMC Microbiol 6:65. doi:10.1186/1471-2180-6-65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Zijnge V, Kieselbach T, Oscarsson J (2012) Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS ONE 7(7):e41662. doi:10.1371/journal.pone.0041662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197. doi:10.1186/1471-2180-9-197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Yamaguchi M, Sato K, Yukitake H, Noiri Y, Ebisu S, Nakayama K (2010) A Porphyromonas gingivalis mutant defective in a putative glycosyltransferase exhibits defective biosynthesis of the polysaccharide portions of lipopolysaccharide, decreased gingipain activities, strong autoaggregation, and increased biofilm formation. Infect Immun 78(9):3801–3812. doi:10.1128/IAI.00071-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957. doi:10.1128/JB.00257-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Tashiro Y, Uchiyama H, Nomura N (2012) Multifunctional membrane vesicles in Pseudomonas aeruginosa. Environ Microbiol 14(6):1349–1362. doi:10.1111/j.1462-2920.2011.02632.x

    Article  CAS  PubMed  Google Scholar 

  111. Altindis E, Fu Y, Mekalanos JJ (2014) Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc Natl Acad Sci USA. doi:10.1073/pnas.1403683111

    PubMed Central  PubMed  Google Scholar 

  112. Schaar V, Nordstrom T, Morgelin M, Riesbeck K (2011) Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 55(8):3845–3853. doi:10.1128/AAC.01772-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Bauman SJ, Kuehn MJ (2009) Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol 9:26. doi:10.1186/1471-2180-9-26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Yonezawa H, Osaki T, Woo T, Kurata S, Zaman C, Hojo F, Hanawa T, Kato S, Kamiya S (2011) Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17(6):388–390. doi:10.1016/j.anaerobe.2011.03.020

    Article  CAS  PubMed  Google Scholar 

  115. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10(1):39–50. doi:10.1038/nrmicro2695

    CAS  Google Scholar 

  116. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185(15):4585–4592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184(1):290–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Huynh TT, McDougald D, Klebensberger J, Al Qarni B, Barraud N, Rice SA, Kjelleberg S, Schleheck D (2012) Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS ONE 7(8):e42874. doi:10.1371/journal.pone.0042874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Vaysse PJ, Prat L, Mangenot S, Cruveiller S, Goulas P, Grimaud R (2009) Proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Res Microbiol 160(10):829–837. doi:10.1016/j.resmic.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  120. Vaysse PJ, Sivadon P, Goulas P, Grimaud R (2011) Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface. Environ Microbiol 13(3):737–746. doi:10.1111/j.1462-2920.2010.02377.x

    Article  CAS  PubMed  Google Scholar 

  121. Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18C:96–104. doi:10.1016/j.mib.2014.02.008

    Article  CAS  Google Scholar 

  122. Chambers JR, Sauer K (2013) Small RNAs and their role in biofilm formation. Trends Microbiol 21(1):39–49. doi:10.1016/j.tim.2012.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308(5730):1915–1920. doi:10.1126/science.1109070

    Article  CAS  PubMed  Google Scholar 

  124. Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, Salojarvi J, Palva A, Salonen A, de Vos WM (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 7(1):e29913. doi:10.1371/journal.pone.0029913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10(3):932–940. doi:10.1021/pr100981r

    Article  CAS  PubMed  Google Scholar 

  126. Hall EK, Besemer K, Kohl L, Preiler C, Riedel K, Schneider T, Wanek W, Battin TJ (2012) Effects of resource chemistry on the composition and function of stream hyporheic biofilms. Front Microbiol 3:35. doi:10.3389/fmicb.2012.00035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Park C, Helm RF (2008) Application of metaproteomic analysis for studying extracellular polymeric substances (EPS) in activated sludge flocs and their fate in sludge digestion. Water Sci Technol 57(12):2009–2015. doi:10.2166/wst.2008.620

    Article  CAS  PubMed  Google Scholar 

  128. Ritter A, Com E, Bazire A, Goncalves MDS, Delage L, Le Pennec G, Pineau C, Dreanno C, Compere C, Dufour A (2012) Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 12(21):3180–3192. doi:10.1002/pmic.201100644

    Article  CAS  PubMed  Google Scholar 

  129. Provenzano JC, Siqueira JF Jr, Rocas IN, Domingues RR, Paes Leme AF, Silva MR (2013) Metaproteome analysis of endodontic infections in association with different clinical conditions. PLoS ONE 8(10):e76108. doi:10.1371/journal.pone.0076108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72(6):3916–3923. doi:10.1128/AEM.03022-05

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Zainal-Abidin Z, Veith PD, Dashper SG, Zhu Y, Catmull DV, Chen YY, Heryanto DC, Chen D, Pyke JS, Tan K, Mitchell HL, Reynolds EC (2012) Differential proteomic analysis of a polymicrobial biofilm. J Proteome Res 11(9):4449–4464. doi:10.1021/pr300201c

    Article  CAS  PubMed  Google Scholar 

  132. Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5(3):254–258. doi:10.1016/S1369-5274(02)00325-9

    Article  CAS  PubMed  Google Scholar 

  133. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    Article  CAS  PubMed  Google Scholar 

  134. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a012427

    PubMed Central  PubMed  Google Scholar 

  135. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–5767

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189(14):5383–5386. doi:10.1128/JB.00137-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, Von Holy A, Brozel VS (2002) Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68(6):2770–2780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Secor PR, Jennings LK, James GA, Kirker KR, Pulcini ED, McInnerney K, Gerlach R, Livinghouse T, Hilmer JK, Bothner B, Fleckman P, Olerud JE, Stewart PS (2012) Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression. PLoS ONE 7(7):e40973. doi:10.1371/journal.pone.0040973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465(7296):346–349. doi:10.1038/nature09074

    Article  CAS  PubMed  Google Scholar 

  140. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y (2013) Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 195(8):1645–1655. doi:10.1128/JB.01672-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. De Vriendt K, Theunissen S, Carpentier W, De Smet L, Devreese B, Van Beeumen J (2005) Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics 5(5):1308–1316. doi:10.1002/pmic.200400989

    Article  PubMed  CAS  Google Scholar 

  142. Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S, Bataille E, Dossat C, Gas S, Kreimeyer A, Lenoble P, Oztas S, Poulain J, Segurens B, Robert C, Abergel C, Claverie JM, Raoult D, Medigue C, Weissenbach J, Cruveiller S (2008) Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS ONE 3(3):e1805. doi:10.1371/journal.pone.0001805

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Lassek C, Burghartz M, Chaves-Moreno D, Otto A, Hentschker C, Fuchs S, Bernhardt J, Jauregui R, Neubauer R, Becher D, Pieper DH, Jahn M, Jahn D, Riedel K (2015) A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections. Mol Cell Proteomics. doi:10.1074/mcp.M114.043463

    PubMed  Google Scholar 

  144. Shin JH, Lee HW, Kim SM, Kim J (2009) Proteomic analysis of Acinetobacter baumannii in biofilm and planktonic growth mode. J Microbiol 47(6):728–735. doi:10.1007/s12275-009-0158-y

    Article  CAS  PubMed  Google Scholar 

  145. Marti S, Nait Chabane Y, Alexandre S, Coquet L, Vila J, Jouenne T, De E (2011) Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors. PLoS ONE 6(10):e26030. doi:10.1371/journal.pone.0026030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 194(17):4485–4493. doi:10.1128/JB.00379-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. doi:10.1128/MMBR.00043-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK, Rabinowitz J, Gitai Z, O’Toole GA (2010) Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. MBio. doi:10.1128/mBio.00183-10

    PubMed Central  PubMed  Google Scholar 

  149. Duvel J, Bertinetti D, Moller S, Schwede F, Morr M, Wissing J, Radamm L, Zimmermann B, Genieser HG, Jansch L, Herberg FW, Haussler S (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 88(2):229–236. doi:10.1016/j.mimet.2011.11.015

    Article  PubMed  CAS  Google Scholar 

  150. Chua SL, Tan SY, Rybtke MT, Chen Y, Rice SA, Kjelleberg S, Tolker-Nielsen T, Yang L, Givskov M (2013) Bis-(3′–5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(5):2066–2075. doi:10.1128/AAC.02499-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 99(4):2287–2292. doi:10.1073/pnas.042521699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Stelzer S, Egan S, Larsen MR, Bartlett DH, Kjelleberg S (2006) Unravelling the role of the ToxR-like transcriptional regulator WmpR in the marine antifouling bacterium Pseudoalteromonas tunicata. Microbiology 152(Pt 5):1385–1394. doi:10.1099/mic.0.28740-0

    Article  CAS  PubMed  Google Scholar 

  153. Jager S, Jonas B, Pfanzelt D, Horstkotte MA, Rohde H, Mack D, Knobloch JK (2009) Regulation of biofilm formation by sigma B is a common mechanism in Staphylococcus epidermidis and is not mediated by transcriptional regulation of sarA. Int J Artif Organs 32(9):584–591

    PubMed  Google Scholar 

  154. Saldias MS, Lamothe J, Wu R, Valvano MA (2008) Burkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages. Infect Immun 76(3):1059–1067. doi:10.1128/IAI.01167-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Gicquel G, Bouffartigues E, Bains M, Oxaran V, Rosay T, Lesouhaitier O, Connil N, Bazire A, Maillot O, Benard M, Cornelis P, Hancock RE, Dufour A, Feuilloley MG, Orange N, Deziel E, Chevalier S (2013) The extra-cytoplasmic function sigma factor sigX modulates biofilm and virulence-related properties in Pseudomonas aeruginosa. PLoS ONE 8(11):e80407. doi:10.1371/journal.pone.0080407

    Article  PubMed Central  PubMed  Google Scholar 

  156. Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267. doi:10.1046/j.1365-2958.2003.03432.x

    Article  CAS  PubMed  Google Scholar 

  157. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864. doi:10.1038/35101627

    Article  CAS  PubMed  Google Scholar 

  158. Thompson LS, Webb JS, Rice SA, Kjelleberg S (2003) The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 220(2):187–195. doi:10.1016/S0378-1097(03)00097-1

    Article  CAS  PubMed  Google Scholar 

  159. Khemiri A, Lecheheb SA, Chi Song PC, Jouenne T, Cosette P (2014) Proteomic regulation during Legionella pneumophila biofilm development: decrease of virulence factors and enhancement of response to oxidative stress. J Water Health 12(2):242–253. doi:10.2166/wh.2014.103

    Article  PubMed  Google Scholar 

  160. Iyer VS, Hancock LE (2012) Deletion of sigma(54) (rpoN) alters the rate of autolysis and biofilm formation in Enterococcus faecalis. J Bacteriol 194(2):368–375. doi:10.1128/JB.06046-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Hao B, Mo ZL, Xiao P, Pan HJ, Lan X, Li GY (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol 97(6):2575–2585. doi:10.1007/s00253-012-4372-x

    Article  CAS  PubMed  Google Scholar 

  162. Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, Arkin AP, Mukhopadhyay A, Fields MW (2012) Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state. BMC Genom 13:138. doi:10.1186/1471-2164-13-138

    Article  CAS  Google Scholar 

  163. Dharmaprakash A, Mutt E, Jaleel A, Ramanathan S, Thomas S (2014) Proteome profile of a pandemic Vibrio parahaemolyticus SC192 strain in the planktonic and biofilm condition. Biofouling 30(6):729–739. doi:10.1080/08927014.2014.916696

    Article  CAS  PubMed  Google Scholar 

  164. Mace C, Seyer D, Chemani C, Cosette P, Di-Martino P, Guery B, Filloux A, Fontaine M, Molle V, Junter GA, Jouenne T (2008) Identification of biofilm-associated cluster (bac) in Pseudomonas aeruginosa involved in biofilm formation and virulence. PLoS ONE 3(12):e3897. doi:10.1371/journal.pone.0003897

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  165. Vera M, Krok B, Bellenberg S, Sand W, Poetsch A (2013) Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 13(7):1133–1144. doi:10.1002/pmic.201200386

    Article  CAS  PubMed  Google Scholar 

  166. Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV (2011) Macromolecular fingerprinting of Sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 10(9):4105–4119. doi:10.1021/pr2003006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Marceau M, Nassif X (1999) Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J Bacteriol 181(2):656–661

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Sampathkumar B, Napper S, Carrillo CD, Willson P, Taboada E, Nash JH, Potter AA, Babiuk LA, Allan BJ (2006) Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology 152(Pt 2):567–577. doi:10.1099/mic.0.28405-0

    Article  CAS  PubMed  Google Scholar 

  169. Grantcharova N, Peters V, Monteiro C, Zakikhany K, Romling U (2010) Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J Bacteriol 192(2):456–466. doi:10.1128/JB.01826-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR (2010) Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 78(1):158–172. doi:10.1111/j.1365-2958.2010.07320.x

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Singer SW, Erickson BK, VerBerkmoes NC, Hwang M, Shah MB, Hettich RL, Banfield JF, Thelen MP (2010) Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities. ISME J 4(11):1398–1409. doi:10.1038/ismej.2010.64

    Article  CAS  PubMed  Google Scholar 

  172. Derouiche A, Cousin C, Mijakovic I (2012) Protein phosphorylation from the perspective of systems biology. Curr Opin Biotechnol 23(4):585–590. doi:10.1016/j.copbio.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  173. Kishi M, Hasegawa Y, Nagano K, Nakamura H, Murakami Y, Yoshimura F (2012) Identification and characterization of novel glycoproteins involved in growth and biofilm formation by Porphyromonas gingivalis. Mol Oral Microbiol 27(6):458–470. doi:10.1111/j.2041-1014.2012.00659.x

    Article  CAS  PubMed  Google Scholar 

  174. Sakamoto A, Terui Y, Yamamoto T, Kasahara T, Nakamura M, Tomitori H, Yamamoto K, Ishihama A, Michael AJ, Igarashi K, Kashiwagi K (2012) Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 44(11):1877–1886. doi:10.1016/j.biocel.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  175. Morris AR, Visick KL (2013) The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol Microbiol 87(3):509–525. doi:10.1111/mmi.12109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Ribet D, Cossart P (2010) Post-translational modifications in host cells during bacterial infection. FEBS Lett 584(13):2748–2758. doi:10.1016/j.febslet.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  177. Wu WL, Liao JH, Lin GH, Lin MH, Chang YC, Liang SY, Yang FL, Khoo KH, Wu SH (2013) Phosphoproteomic analysis reveals the effects of PilF phosphorylation on type IV pilus and biofilm formation in Thermus thermophilus HB27. Mol Cell Proteomics 12(10):2701–2713. doi:10.1074/mcp.M113.029330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Petrova OE, Sauer K (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog 5(11):e1000668. doi:10.1371/journal.ppat.1000668

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  179. Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13(7):1666–1681. doi:10.1111/j.1462-2920.2011.02495.x

    Article  CAS  PubMed  Google Scholar 

  180. Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186(17):5629–5639. doi:10.1128/JB.186.17.5629-5639.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13(7):1666–1681. doi:10.1111/j.1462-2920.2011.02495.x

    Article  CAS  PubMed  Google Scholar 

  182. Posch G, Pabst M, Brecker L, Altmann F, Messner P, Schaffer C (2011) Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem 286(44):38714–38724. doi:10.1074/jbc.M111.284893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Hitchen PG, Twigger K, Valiente E, Langdon RH, Wren BW, Dell A (2010) Glycoproteomics: a powerful tool for characterizing the diverse glycoforms of bacterial pilins and flagellins. Biochem Soc Trans 38(5):1307–1313. doi:10.1042/BST0381307

    Article  CAS  PubMed  Google Scholar 

  184. Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Hojrup P, Packer NH, Larsen MR, Cordwell SJ (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10(2):M000031–MCP000201. doi:10.1074/mcp.M000031-MCP201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  185. Hitchen PG, Dell A (2006) Bacterial glycoproteomics. Microbiology 152(Pt 6):1575–1580. doi:10.1099/mic.0.28859-0

    Article  CAS  PubMed  Google Scholar 

  186. Besanceney-Webler C, Jiang H, Wang W, Baughn AD, Wu P (2011) Metabolic labeling of fucosylated glycoproteins in Bacteroidales species. Bioorg Med Chem Lett 21(17):4989–4992. doi:10.1016/j.bmcl.2011.05.038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Magalhaes A, Ismail MN, Reis CA (2010) Sweet receptors mediate the adhesion of the gastric pathogen Helicobacter pylori: glycoproteomic strategies. Expert Rev Proteomics 7(3):307–310. doi:10.1586/epr.10.18

    Article  CAS  PubMed  Google Scholar 

  188. Gerlach JQ, Kilcoyne M, Farrell MP, Kane M, Joshi L (2012) Differential release of high mannose structural isoforms by fungal and bacterial endo-beta-N-acetylglucosaminidases. Mol BioSyst 8(5):1472–1481. doi:10.1039/c2mb05455h

    Article  CAS  PubMed  Google Scholar 

  189. Benz I, Schmidt MA (2002) Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol 45(2):267–276. doi:10.1046/j.1365-2958.2002.03030.x

    Article  CAS  PubMed  Google Scholar 

  190. Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102(2):285–303. doi:10.1021/cr000423j

    Article  CAS  PubMed  Google Scholar 

  191. Khemiri A, Naudin B, Franck X, Chan Tchi Song P, Jouenne T, Cosette P (2013) N-Glycosidase treatment with (18)O labeling and de novo sequencing argues for flagellin FliC glycopolymorphism in Pseudomonas aeruginosa. Anal Bioanal Chem 405(30):9835–9842. doi:10.1007/s00216-013-7424-x

    Article  CAS  PubMed  Google Scholar 

  192. McNamara M, Tzeng SC, Maier C, Zhang L, Bermudez LE (2012) Surface proteome of “Mycobacterium avium subsp. hominissuis” during the early stages of macrophage infection. Infect Immun 80(5):1868–1880. doi:10.1128/IAI.06151-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Jarrell KF, Jones GM, Kandiba L, Nair DB, Eichler J (2010) S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea. doi:10.1155/2010/612948

    PubMed Central  PubMed  Google Scholar 

  194. Banerjee A, Ghosh SK (2003) The role of pilin glycan in neisserial pathogenesis. Mol Cell Biochem 253(1–2):179–190

    Article  CAS  PubMed  Google Scholar 

  195. Jennings MP, Jen FE, Roddam LF, Apicella MA, Edwards JL (2011) Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol 13(6):885–896. doi:10.1111/j.1462-5822.2011.01586.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Yin QY, de Groot PW, de Koster CG, Klis FM (2008) Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16(1):20–26. doi:10.1016/j.tim.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  197. Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8(8):e1002848. doi:10.1371/journal.ppat.1002848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012) Electrochemically active biofilms: facts and fiction. A review. Biofouling 28(8):789–812. doi:10.1080/08927014.2012.710324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Kalathil S, Khan MM, Lee J, Cho MH (2013) Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv 31(6):915–924. doi:10.1016/j.biotechadv.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  200. Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23(6):820–826. doi:10.1016/j.bios.2007.08.021

    Article  CAS  PubMed  Google Scholar 

  201. Lindblad P, Lindberg P, Oliveira P, Stensjo K, Heidorn T (2012) Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. Ambio 41(Suppl 2):163–168. doi:10.1007/s13280-012-0274-5

    Article  PubMed Central  PubMed  Google Scholar 

  202. Pereira-Medrano AG, Knighton M, Fowler GJ, Ler ZY, Pham TK, Ow SY, Free A, Ward B, Wright PC (2013) Quantitative proteomic analysis of the exoelectrogenic bacterium Arcobacter butzleri ED-1 reveals increased abundance of a flagellin protein under anaerobic growth on an insoluble electrode. J Proteomics 78:197–210. doi:10.1016/j.jprot.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  203. Sun G, Thygesen A, Ale MT, Mensah M, Poulsen FW, Meyer AS (2014) The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5486-5

    Google Scholar 

  204. Monroe D (2007) Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5(11):e307. doi:10.1371/journal.pbio.0050307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  205. Perrot F, Hebraud M, Charlionet R, Junter GA, Jouenne T (2001) Cell immobilization induces changes in the protein response of Escherichia coli K-12 to a cold shock. Electrophoresis 22(10):2110–2119. doi:10.1002/1522-2683(200106)22:10<2110:AID-ELPS2110>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  206. Schmidt I, Steenbakkers PJ, op den Camp HJ, Schmidt K, Jetten MS (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186(9):2781–2788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Benard L, Litzler PY, Cosette P, Lemeland JF, Jouenne T, Junter GA (2009) Proteomic analysis of Staphylococcus aureus biofilms grown in vitro on mechanical heart valve leaflets. J Biomed Mater Res A 88(4):1069–1078. doi:10.1002/jbm.a.31941

    Article  PubMed  CAS  Google Scholar 

  208. Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N (2013) Insights into xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 13:186. doi:10.1186/1471-2180-13-186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  209. Coquet L, Cosette P, De E, Galas L, Vaudry H, Rihouey C, Lerouge P, Junter GA, Jouenne T (2005) Immobilization induces alterations in the outer membrane protein pattern of Yersinia ruckeri. J Proteome Res 4(6):1988–1998. doi:10.1021/pr050165c

    Article  CAS  PubMed  Google Scholar 

  210. Meyer DH, Fives-Taylor PM (1994) Characteristics of adherence of Actinobacillus actinomycetemcomitans to epithelial cells. Infect Immun 62(3):928–935

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Siroy A, Cosette P, Seyer D, Lemaitre-Guillier C, Vallenet D, Van Dorsselaer A, Boyer-Mariotte S, Jouenne T, De E (2006) Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. J Proteome Res 5(12):3385–3398. doi:10.1021/pr060372s

    Article  CAS  PubMed  Google Scholar 

  212. Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182(12):3593–3596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Rodrigues DF, Elimelech M (2009) Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Biofouling 25(5):401–411. doi:10.1080/08927010902833443

    Article  CAS  PubMed  Google Scholar 

  214. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855. doi:10.1126/science.1067484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Boucher JC, Yu H, Mudd MH, Deretic V (1997) Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65(9):3838–3846

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Boucher JC, Schurr MJ, Yu H, Rowen DW, Deretic V (1997) Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. Microbiology 143(Pt 11):3473–3480

    Article  CAS  PubMed  Google Scholar 

  217. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Pham TK, Roy S, Noirel J, Douglas I, Wright PC, Stafford GP (2010) A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia. Proteomics 10(17):3130–3141. doi:10.1002/pmic.200900448

    Article  CAS  PubMed  Google Scholar 

  219. Shibata S, Visick KL (2012) Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles that depend on the symbiosis polysaccharide locus in Vibrio fischeri. J Bacteriol 194(1):185–194. doi:10.1128/JB.05926-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  220. Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74(6):3415–3426. doi:10.1128/IAI.00392-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Vadyvaloo V, Otto M (2005) Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. Int J Artif Organs 28(11):1069–1078

    CAS  PubMed  Google Scholar 

  222. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA 107(5):2230–2234. doi:10.1073/pnas.0910560107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  223. Renier S, Chambon C, Viala D, Chagnot C, Hebraud M, Desvaux M (2013) Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e. J Proteomics 80C:183–195. doi:10.1016/j.jprot.2012.11.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grant: program number 33267 FEDER/CNRS.

Conflict of interest

The authors report no declaration of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbia Khemiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemiri, A., Jouenne, T. & Cosette, P. Proteomics dedicated to biofilmology: What have we learned from a decade of research?. Med Microbiol Immunol 205, 1–19 (2016). https://doi.org/10.1007/s00430-015-0423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0423-0

Keywords

Navigation