Skip to main content
Log in

N-Glycosidase treatment with 18O labeling and de novo sequencing argues for flagellin FliC glycopolymorphism in Pseudomonas aeruginosa

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In prokaryote organisms, N-glycosylation of proteins is often correlated to cell–cell recognition and extracellular events. Those glycoproteins are potential targets for infection control. To date, many surface-glycosylated proteins from bacterial pathogens have been described. However, N-linked Pseudomonas surface-associated glycoproteins remain underexplored. We report a combined enrichment and labeling strategy to identify major glycoproteins on the outside of microorganisms. More precisely, bacteria were exposed to a mix of biotinylated lectins able to bind with glycoproteins. The latter were then recovered by avidin beads, digested with trypsin, and submitted to mass spectrometry. The targeted mixture of glycoproteins was additionally deglycosylated in the presence of H2 18O to incorporate 18O during PNGase F treatment and were also analyzed using mass spectrometry. This approach allowed us to identify a few tens of potential N-glycoproteins, among which flagellin FliC was the most abundant. To detect the possible sites of FliC modifications, a de novo sequencing step was also performed to discriminate between spontaneous deamidation and N-glycan loss. This approach led to the proposal of three potential N-glycosylated sites on the primary sequence of FliC: N26, N69, and N439, with two of these three asparagines belonging to an N-X-(S/T) consensus sequence. These observations suggest that flagellin FliC is a heterogeneous protein mixture containing both O- and N-glycoforms.

Analytical scenario developed for bacterial glycoprotein enrichment. This strategy includes three main steps: (1) exposure of Pseudomonas aeruginosa cells to a mixture of biotinylated lectins [wheat germ agglutinin (WGA) and concanavalin A (ConA)]; (2) enrichment of N-glycoproteins by elution with avidin beads; and (3) mass spectrometry (MS) identification and characterization of intact and deglycosylated peptides before and after H2 18O PNGase F enzymatic treatment, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ConA:

Concanavalin A

HPLC:

High-performance liquid chromatography

MS:

Mass spectrometry

PTM:

Posttranslational modification

WGA:

Wheat germ agglutinin

References

  1. Novotny MV, Alley WR Jr (2013) Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol. doi:10.1016/j.cbpa.2013.05.029

    Google Scholar 

  2. Kim WK, Hwang HR, Kim DH, Lee PY, In YJ, Ryu HY, Park SG, Bae KH, Lee SC (2008) Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers. Exp Mol Med 40(6):677–685. doi:10.3858/emm.2008.40.6.677

    Article  CAS  Google Scholar 

  3. Abd Hamid UM, Royle L, Saldova R, Radcliffe CM, Harvey DJ, Storr SJ, Pardo M, Antrobus R, Chapman CJ, Zitzmann N, Robertson JF, Dwek RA, Rudd PM (2008) A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18(12):1105–1118. doi:10.1093/glycob/cwn095

    Article  CAS  Google Scholar 

  4. Zeng X, Hood BL, Sun M, Conrads TP, Day RS, Weissfeld JL, Siegfried JM, Bigbee WL (2010) Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J Proteome Res 9(12):6440–6449. doi:10.1021/pr100696n

    Article  CAS  Google Scholar 

  5. Li B, An HJ, Kirmiz C, Lebrilla CB, Lam KS, Miyamoto S (2008) Glycoproteomic analyses of ovarian cancer cell lines and sera from ovarian cancer patients show distinct glycosylation changes in individual proteins. J Proteome Res 7(9):3776–3788. doi:10.1021/pr800297u

    Article  CAS  Google Scholar 

  6. Benz I, Schmidt MA (2002) Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol 45(2):267–276

    Article  CAS  Google Scholar 

  7. Nothaft H, Szymanski CM (2013) Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 288(10):6912–6920. doi:10.1074/jbc.R112.417857

    Article  CAS  Google Scholar 

  8. Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, Mills DC, Watson DC, Hernandez M, Kelly JF, Wacker M, Aebi M (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9):1957–1966. doi:10.1038/sj.emboj.7601087

    Article  CAS  Google Scholar 

  9. Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102(2):285–303

    Article  CAS  Google Scholar 

  10. McNamara M, Tzeng SC, Maier C, Zhang L, Bermudez LE (2012) Surface proteome of "Mycobacterium avium subsp. hominissuis" during the early stages of macrophage infection. Infect Immun 80(5):1868–1880. doi:10.1128/IAI.06151-11

    Article  CAS  Google Scholar 

  11. Jarrell KF, Jones GM, Kandiba L, Nair DB, Eichler J (2010) S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea 2010:612948. doi:10.1155/2010/612948

    Article  Google Scholar 

  12. Banerjee A, Ghosh SK (2003) The role of pilin glycan in neisserial pathogenesis. Mol Cell Biochem 253(1–2):179–190

    Article  CAS  Google Scholar 

  13. Jennings MP, Jen FE, Roddam LF, Apicella MA, Edwards JL (2011) Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol 13(6):885–896. doi:10.1111/j.1462-5822.2011.01586.x

    Article  CAS  Google Scholar 

  14. Szymanski CM, Logan SM, Linton D, Wren BW (2003) Campylobacter–a tale of two protein glycosylation systems. Trends Microbiol 11(5):233–238

    Article  CAS  Google Scholar 

  15. Kahler CM, Martin LE, Tzeng YL, Miller YK, Sharkey K, Stephens DS, Davies JK (2001) Polymorphisms in pilin glycosylation locus of Neisseria meningitidis expressing class II pili. Infect Immun 69(6):3597–3604. doi:10.1128/IAI.69.6.3597-3604.2001

    Article  CAS  Google Scholar 

  16. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793. doi:10.1126/science.298.5599.1790

    Article  CAS  Google Scholar 

  17. Oleastro M, Santos A, Cordeiro R, Nunes B, Megraud F, Menard A (2010) Clinical relevance and diversity of two homologous genes encoding glycosyltransferases in Helicobacter pylori. J Clin Microbiol 48(8):2885–2891. doi:10.1128/JCM.00401-10

    Article  CAS  Google Scholar 

  18. Miller WL, Matewish MJ, McNally DJ, Ishiyama N, Anderson EM, Brewer D, Brisson JR, Berghuis AM, Lam JS (2008) Flagellin glycosylation in Pseudomonas aeruginosa PAK requires the O-antigen biosynthesis enzyme WbpO. J Biol Chem 283(6):3507–3518. doi:10.1074/jbc.M708894200

    Article  CAS  Google Scholar 

  19. Faridmoayer A, Fentabil MA, Mills DC, Klassen JS, Feldman MF (2007) Functional characterization of bacterial oligosaccharyltransferases involved in O-linked protein glycosylation. J Bacteriol 189(22):8088–8098. doi:10.1128/JB.01318-07

    Article  CAS  Google Scholar 

  20. Bartels KM, Funken H, Knapp A, Brocker M, Bott M, Wilhelm S, Jaeger KE, Rosenau F (2011) Glycosylation is required for outer membrane localization of the lectin LecB in Pseudomonas aeruginosa. J Bacteriol 193(5):1107–1113. doi:10.1128/JB.01507-10

    Article  CAS  Google Scholar 

  21. Liu Z, Cao J, He Y, Qiao L, Xu C, Lu H, Yang P (2010) Tandem 18O stable isotope labeling for quantification of N-glycoproteome. J Proteome Res 9(1):227–236. doi:10.1021/pr900528j

    Article  CAS  Google Scholar 

  22. Robinson NE (2002) Protein deamidation. Proc Natl Acad Sci U S A 99(8):5283–5288. doi:10.1073/pnas.082102799

    Article  CAS  Google Scholar 

  23. Han X, He L, Xin L, Shan B, Ma B (2011) PeaksPTM: Mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res 10(7):2930–2936. doi:10.1021/pr200153k

    Article  CAS  Google Scholar 

  24. Kung LA, Tao SC, Qian J, Smith MG, Snyder M, Zhu H (2009) Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes. Mol Syst Biol 5:308. doi:10.1038/msb.2009.64

    Article  Google Scholar 

  25. Alley WR Jr, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23(1):161–170. doi:10.1002/rcm.3850

    Article  CAS  Google Scholar 

  26. Hagglund P, Matthiesen R, Elortza F, Hojrup P, Roepstorff P, Jensen ON, Bunkenborg J (2007) An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res 6(8):3021–3031. doi:10.1021/pr0700605

    Article  Google Scholar 

  27. Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A (2004) Challenges in mass spectrometry-based proteomics. Proteomics 4(12):3686–3703. doi:10.1002/pmic.200400869

    Article  CAS  Google Scholar 

  28. McKerrow JH, Robinson AB (1971) Deamidation of asparaginyl residues as a hazard in experimental protein and peptide procedures. Anal Biochem 42(2):565–568

    Article  CAS  Google Scholar 

  29. Arora SK, Neely AN, Blair B, Lory S, Ramphal R (2005) Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 73(7):4395–4398. doi:10.1128/IAI.73.7.4395-4398.2005

    Article  CAS  Google Scholar 

  30. Verma A, Arora SK, Kuravi SK, Ramphal R (2005) Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect Immun 73(12):8237–8246. doi:10.1128/IAI.73.12.8237-8246.2005

    Article  CAS  Google Scholar 

  31. Hao P, Ren Y, Alpert AJ, Sze SK (2011) Detection, evaluation and minimization of nonenzymatic deamidation in proteomic sample preparation. Mol Cell Proteomics 10(10):O111.009381. doi:10.1074/mcp.O111.009381

    Article  Google Scholar 

  32. Merkx-Jacques A, Gryski I, Creuzenet C (2006) Investigating the glycosylation of GroEL and its role in the virulence of Campylobacter jejuni. Can J Gastroenterol 20(Suppl A):1A–128A

    Google Scholar 

  33. Cuthbertson L, Kos V, Whitfield C (2010) ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev 74(3):341–362. doi:10.1128/MMBR.00009-10

    Article  CAS  Google Scholar 

  34. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, Hancock RE, Brinkman FS (2011) Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600. doi:10.1093/nar/gkq869

    Article  CAS  Google Scholar 

  35. Ma B, Johnson R (2012) De novo sequencing and homology searching. Mol Cell Proteomics 11(2):O111 014902. doi:10.1074/mcp.O111.014902

    Article  Google Scholar 

  36. Schirm M, Arora SK, Verma A, Vinogradov E, Thibault P, Ramphal R, Logan SM (2004) Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa. J Bacteriol 186(9):2523–2531

    Article  CAS  Google Scholar 

  37. Takeuchi K, Ono H, Yoshida M, Ishii T, Katoh E, Taguchi F, Miki R, Murata K, Kaku H, Ichinose Y (2007) Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in D and L configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. J Bacteriol 189(19):6945–6956. doi:10.1128/JB.00500-07

    Article  CAS  Google Scholar 

  38. Brimer CD, Montie TC (1998) Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J Bacteriol 180(12):3209–3217

    CAS  Google Scholar 

  39. Morelle W, Canis K, Chirat F, Faid V, Michalski JC (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6(14):3993–4015. doi:10.1002/pmic.200600129

    Article  CAS  Google Scholar 

  40. Ravichandran A, Sugiyama N, Tomita M, Swarup S, Ishihama Y (2009) Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics 9(10):2764–2775. doi:10.1002/pmic.200800655

    Article  CAS  Google Scholar 

  41. Nouwens AS, Willcox MD, Walsh BJ, Cordwell SJ (2002) Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa. Proteomics 2(9):1325–1346. doi:10.1002/1615-9861(200209)2:9<1325::AID-PROT1325>3.0.CO;2-4

    Article  CAS  Google Scholar 

  42. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, Park SH, Kim YK, Hwang D, Gho YS (2011) Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11(16):3424–3429. doi:10.1002/pmic.201000212

    Article  CAS  Google Scholar 

  43. Toyofuku M, Roschitzki B, Riedel K, Eberl L (2012) Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 11(10):4906–4915. doi:10.1021/pr300395j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These investigations were made possible thanks to FEDER funding (program number 33267). A.K. is the recipient of a postdoctoral fellowship endorsed within an ANR program (ANR-BLANC-732-01 grant). The authors also thank F. Jarnier for help in implementation of de novo sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Cosette.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khemiri, A., Naudin, B., Franck, X. et al. N-Glycosidase treatment with 18O labeling and de novo sequencing argues for flagellin FliC glycopolymorphism in Pseudomonas aeruginosa . Anal Bioanal Chem 405, 9835–9842 (2013). https://doi.org/10.1007/s00216-013-7424-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7424-x

Keywords

Navigation