Skip to main content
Log in

RETRACTED ARTICLE: Comparing astrocytic gap junction of genetic absence epileptic rats with control rats: an experimental study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

This article was retracted on 07 April 2023

A Correction to this article was published on 11 January 2022

This article has been updated

Abstract

The synchronization of astrocytes via gap junctions (GJ) is a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal networks. Little is known about the endogenous response of GJ in genetic absence epileptic animal models. We evaluated and quantified astrocyte GJ protein connexin (Cx) 30 and 43 in the somatosensory cortex (SSCx), ventrobasal (VB), centromedian (CM), lateral geniculate (LGN) and thalamic reticular (TRN) nuclei of thalamus of genetic absence epilepsy rats from Strasbourg (GAERS), Wistar albino glaxo rats from Rijswijk (WAG/Rij) and control Wistar animals using immunohistochemistry and Western Blot. The Cx30 and Cx43 immunopositive astrocytes per unit area were quantified for each region of the three animal strains. Furthermore, Cx30 and Cx43 Western Blot was applied to the tissue samples from the same regions of the three strain. The number of Cx30 immunopositive astrocytes showed significant increase in both GAERS and WAG/Rij compared to control Wistar in all brain regions studied except LGN of WAG/Rij animals. Furthermore, Cx43 in both GAERS and WAG/Rij showed significant increase in SSCx, VB and TRN. The protein expression was increased in both Cx30 and Cx43 in the two epileptic strains compared to control Wistar animals. The significant increase in the astrocytic GJ proteins Cx30 and Cx43 and the differences in the co-expression of Cx30 and Cx43 in the genetically absence epileptic strains compared to control Wistar animals may suggest that astrocytic Cx’s may be involved in the mechanism of absence epilepsy. Increased number of astrocytic Cx’s in GAERS and WAG/Rij may represent a compensatory response of the thalamocortical circuitry to the absence seizures or may be related to the production and/or development of absence seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

Download references

Acknowledgements

The authors would like to thank Koç University Research Center for Translational Medicine (KUTTAM) for using the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safiye Çavdar.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. All authors declare that they have no actual or potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s00429-023-02640-z

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdar, S., Köse, B., Sur-Erdem, İ. et al. RETRACTED ARTICLE: Comparing astrocytic gap junction of genetic absence epileptic rats with control rats: an experimental study. Brain Struct Funct 226, 2113–2123 (2021). https://doi.org/10.1007/s00429-021-02310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02310-y

Keywords

Navigation