Skip to main content

Advertisement

Log in

Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

To gain more insight into central hearing loss, we investigated the relationship between cortical thickness and surface area, speech-relevant resting state EEG power, and above-threshold auditory measures in older adults and younger controls. Twenty-three older adults and 13 younger controls were tested with an adaptive auditory test battery to measure not only traditional pure-tone thresholds, but also above individual thresholds of temporal and spectral processing. The participants’ speech recognition in noise (SiN) was evaluated, and a T1-weighted MRI image obtained for each participant. We then determined the cortical thickness (CT) and mean cortical surface area (CSA) of auditory and higher speech-relevant regions of interest (ROIs) with FreeSurfer. Further, we obtained resting state EEG from all participants as well as data on the intrinsic theta and gamma power lateralization, the latter in accordance with predictions of the Asymmetric Sampling in Time hypothesis regarding speech processing (Poeppel, Speech Commun 41:245–255, 2003). Methodological steps involved the calculation of age-related differences in behavior, anatomy and EEG power lateralization, followed by multiple regressions with anatomical ROIs as predictors for auditory performance. We then determined anatomical regressors for theta and gamma lateralization, and further constructed all regressions to investigate age as a moderator variable. Behavioral results indicated that older adults performed worse in temporal and spectral auditory tasks, and in SiN, despite having normal peripheral hearing as signaled by the audiogram. These behavioral age-related distinctions were accompanied by lower CT in all ROIs, while CSA was not different between the two age groups. Age modulated the regressions specifically in right auditory areas, where a thicker cortex was associated with better auditory performance in older adults. Moreover, a thicker right supratemporal sulcus predicted more rightward theta lateralization, indicating the functional relevance of the right auditory areas in older adults. The question how age-related cortical thinning and intrinsic EEG architecture relates to central hearing loss has so far not been addressed. Here, we provide the first neuroanatomical and neurofunctional evidence that cortical thinning and lateralization of speech-relevant frequency band power relates to the extent of age-related central hearing loss in older adults. The results are discussed within the current frameworks of speech processing and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, Masutani Y, Kato Nobuyuki, Kato Nobumasa, Ohtomo K (2008) Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 29:102–116. doi:10.1016/j.neurobiolaging.2006.09.003

    Article  PubMed  Google Scholar 

  • Abrams DA, Nicol T, Zecker S, Kraus N (2008) Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J Neurosci 28:3958–3965. doi:10.1523/JNEUROSCI.0187-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26:1245–1260. doi:10.1016/j.neurobiolaging.2005.05.023

    Article  PubMed  Google Scholar 

  • Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB (2016) Organizing principles of human cortical development—thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb Cortex 26:257–267. doi:10.1093/cercor/bhu214

    Article  PubMed  Google Scholar 

  • Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N (2013) A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hear Res 300:18–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    Article  CAS  PubMed  Google Scholar 

  • Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2009) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596. doi:10.1093/cercor/bhn196

    Article  PubMed  Google Scholar 

  • Bertoli S, Staehelin K, Zemp E, Schindler C, Bodmer D, Probst R (2009) Survey on hearing aid use and satisfaction in Switzerland and their determinants. Int J Audiol 48:183–195. doi:10.1080/14992020802572627

    Article  PubMed  Google Scholar 

  • Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci. doi:10.3389/fnsys.2014.00026

    PubMed  PubMed Central  Google Scholar 

  • Bidelman GM, Howell M (2016) Functional changes in inter- and intra-hemispheric cortical processing underlying degraded speech perception. NeuroImage 124(Part A):581–590. doi:10.1016/j.neuroimage.2015.09.020

    Article  PubMed  Google Scholar 

  • Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395. doi:10.1038/nn1409

    Article  CAS  PubMed  Google Scholar 

  • Brant LJ, Fozard JL (1990) Age changes in pure-tone hearing thresholds in a longitudinal study of normal human aging. J Acoust Soc Am 88:813–820. doi:10.1121/1.399731

    Article  CAS  PubMed  Google Scholar 

  • Bühner M, Ziegler M, Bohnes B, Lauterbach K (2006) Übungseffekte in den TAP Untertests Test Go/Nogo und Geteilte Aufmerksamkeit sowie dem Aufmerksamkeits-Belastungstest (d2). Z. Für Neuropsychol. 17:191–199. doi:10.1024/1016-264X.17.3.191

    Article  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17:1394–1402

    Article  PubMed  Google Scholar 

  • Cardinale F, Chinnici G, Bramerio M, Mai R, Sartori I, Cossu M, Lo Russo G, Castana L, Colombo N, Caborni C, De Momi E, Ferrigno G (2014) Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics 12:535–542

    Article  PubMed  Google Scholar 

  • Chien W, Lin FR (2012) Prevalence of hearing aid use among older adults in the united states. Arch Intern Med 172:292–293. doi:10.1001/archinternmed.2011.1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, Nondahl DM (1998) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 148:879–886

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical Surface-Based Analysis; I. Segmentation and Surface Reconstruction. NeuroImage 9:179–194

    CAS  PubMed  Google Scholar 

  • Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex N Y N 1991(18):1201–1209. doi:10.1093/cercor/bhm155

    Article  Google Scholar 

  • Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53:1–15. doi:10.1016/j.neuroimage.2010.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage 85:761–768. doi:10.1016/j.neuroimage.2013.06.035

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Buchsbaum BR, Grady CL, Alain C (2016) Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nat Commun 7:12241. doi:10.1038/ncomms12241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert MA, Cute SL, Vaden KI, Kuchinsky SE, Dubno JR (2012) Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol 13:703–713. doi:10.1007/s10162-012-0332-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth Ø, Larsen VA, Walhovd KB (2010) Effects of memory training on cortical thickness in the elderly. NeuroImage 52:1667–1676. doi:10.1016/j.neuroimage.2010.05.041

    Article  PubMed  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis; II. Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM (2004a) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:69–84

    Article  Google Scholar 

  • Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Caviness V, Makris N, Rosen B, Dale AM (2004b) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  PubMed  Google Scholar 

  • Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, Raz N, Dale AM, Walhovd KB, Alzheimer Disease Neuroimaging Initiative (2014) Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex 24:919–934. doi:10.1093/cercor/bhs379

    Article  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fostick L, Ben-Artzi E, Babkoff H (2013) Aging and speech perception: beyond hearing threshold and cognitive ability. J Basic Clin Physiol Pharmacol 24:175–183

    PubMed  Google Scholar 

  • Friederici AD (2012) The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn Sci 16:262–268

    Article  PubMed  Google Scholar 

  • Füllgrabe C (2013) Age-dependent changes in temporal-fine-structure processing in the absence of peripheral hearing loss. Am J Audiol 22:313–315. doi:10.1044/1059-0889(2013/12-0070)

    Article  PubMed  Google Scholar 

  • Füllgrabe C, Moore BCJ, Stone MA (2015) Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front Aging Neurosci. doi:10.3389/fnagi.2014.00347

    PubMed  PubMed Central  Google Scholar 

  • Gabrieli JDE, Poldrack RA, Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA 95:906–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud A-L, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud AL, Truy E (2002) The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects. Neuropsychologia 40:1562–1569. doi:10.1016/S0028-3932(02)00023-4

    Article  PubMed  Google Scholar 

  • Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS (2001) Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30:657–663

    Article  CAS  PubMed  Google Scholar 

  • Giraud A-L, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RSJ, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134. doi:10.1016/j.neuron.2007.09.038

    Article  CAS  PubMed  Google Scholar 

  • Giroud N, Lemke U, Reich P, Matthes KL, Meyer M (2017a) Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis. Biol Psychol 123:25–36. doi:10.1016/j.biopsycho.2016.11.007

    Article  PubMed  Google Scholar 

  • Giroud N, Lemke U, Reich P, Matthes KL, Meyer M (2017b) The impact of hearing aids and age-related hearing loss on auditory plasticity across three months—an electrical neuroimaging study. Hear Res. doi:10.1016/j.heares.2017.06.012

    PubMed  Google Scholar 

  • Gordon-Salant S, Fitzgibbons PJ (1999) Profile of auditory temporal processing in older listeners. J Speech Lang Hear Res 42:300. doi:10.1044/jslhr.4202.300

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Salant S, Yeni-Komshian GH, Fitzgibbons PJ (2010) Recognition of accented English in quiet and noise by younger and older listeners. J Acoust Soc Am 128:3152–3160. doi:10.1121/1.3495940

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon-Salant S, Yeni-Komshian GH, Fitzgibbons PJ, Cohen JI (2015) Effects of age and hearing loss on recognition of unaccented and accented multisyllabic words. J Acoust Soc Am 137:884–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Grady C (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13:491–505. doi:10.1038/nrn3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, Garrod S (2013) Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol 11:e1001752

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  CAS  PubMed  Google Scholar 

  • Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23:2521–2530. doi:10.1093/cercor/bhs231

    Article  PubMed  Google Scholar 

  • Hopkins K, Moore BCJ (2011) The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am 130:334–349. doi:10.1121/1.3585848

    Article  PubMed  Google Scholar 

  • Huang Q, Tang J (2010) Age-related hearing loss or presbycusis. Eur Arch Otorhinolaryngol 267:1179–1191. doi:10.1007/s00405-010-1270-7

    Article  PubMed  Google Scholar 

  • Humes LE, Dubno JR, Gordon-Salant S, Lister JJ, Cacace AT, Cruickshanks KJ, Gates GA, Wilson RH, Wingfield A (2012) Central presbycusis: a review and evaluation of the evidence. J Am Acad Audiol 23:635–666

    Article  PubMed  Google Scholar 

  • Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88

    Article  CAS  PubMed  Google Scholar 

  • Hutsler J, Galuske RAW (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26:429–435. doi:10.1016/S0166-2236(03)00198-X

    Article  CAS  PubMed  Google Scholar 

  • Jung T, Makeig S, Humphries C, Lee T, McKeown M, Iragui V (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178

    Article  CAS  PubMed  Google Scholar 

  • Kreiner H, Eviatar Z (2014) The missing link in the embodiment of syntax: prosody. Brain Lang 137:91–102. doi:10.1016/j.bandl.2014.08.004

    Article  PubMed  Google Scholar 

  • Kuperberg GR, Holcomb PJ, Sitnikova T, Greve D, Dale AM, Caplan D (2003) Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies. J Cogn Neurosci 15:272–293

    Article  PubMed  Google Scholar 

  • Lecluyse W, Meddis R (2009) A simple single-interval adaptive procedure for estimating thresholds in normal and impaired listeners. J Acoust Soc Am 126:2570

    Article  PubMed  Google Scholar 

  • Lecluyse W, Tan CM, McFerran D, Meddis R (2013) Acquisition of auditory profiles for good and impaired hearing. Int J Audiol 52:596–605. doi:10.3109/14992027.2013.796530

    Article  PubMed  Google Scholar 

  • Lee FS, Matthews LJ, Dubno JR, Mills JH (2005) Longitudinal study of pure-tone thresholds in older persons. Ear Hear 26:1–11

    Article  PubMed  Google Scholar 

  • Lee NR, Adeyemi EI, Lin A, Clasen LS, Lalonde FM, Condon E, Driver DI, Shaw P, Gogtay N, Raznahan A, Giedd JN (2016) Dissociations in cortical morphometry in youth with Down syndrome: evidence for reduced surface area but increased thickness. Cereb Cortex 26:2982–2990. doi:10.1093/cercor/bhv107

    Article  PubMed  Google Scholar 

  • Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol. Aging 33:617.e1–617.e9. doi:10.1016/j.neurobiolaging.2010.07.013

    Google Scholar 

  • Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS One 11:e0162726. doi:10.1371/journal.pone.0162726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liem F, Zaehle T, Burkhard A, Jäncke L, Meyer M (2012) Cortical thickness of supratemporal plane predicts auditory N1 amplitude. NeuroReport 23:1026–1030. doi:10.1097/WNR.0b013e32835abc5c

    Article  PubMed  Google Scholar 

  • Liem F, Hurschler MA, Jäncke L, Meyer M (2014) On the planum temporale lateralization in suprasegmental speech perception: evidence from a study investigating behavior, structure, and function. Hum Brain Mapp 35:1779–1789. doi:10.1002/hbm.22291

    Article  PubMed  Google Scholar 

  • Liem F, Mérillat S, Bezzola L, Hirsiger S, Philipp M, Madhyastha T, Jäncke L (2015) Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. NeuroImage 108:95–109. doi:10.1016/j.neuroimage.2014.12.035

    Article  PubMed  Google Scholar 

  • Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, Davatzikos C, Kraut MA, Resnick SM (2014) Association of hearing impairment with brain volume changes in older adults. NeuroImage 90:84–92. doi:10.1016/j.neuroimage.2013.12.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundquist AP (2009) Spatial heterogeneity of functional magnetic resonance imaging indices of dorsolateral prefrontal cortex activation evoked by a working memory task. A comparison of patients with schizophrenia and healthy controls (Unpublished Master’s Thesis). Swiss Federal Institute of Technology, Lausanne

  • Luo H, Poeppel D (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54:1001–1010. doi:10.1016/j.neuron.2007.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Poeppel D (2012) Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex. Front Psychol 3:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH (2015) Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex 25:2204–2212. doi:10.1093/cercor/bhu027

    Article  PubMed  Google Scholar 

  • Meyer M, Liem F, Hirsiger S, Jäncke L, Hänggi J (2014) Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex. Cereb Cortex 24:2541–2552

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. doi:10.1146/annurev.neuro.24.1.167

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Edmondson-Jones M, Dawes P, Fortnum H, McCormack A, Pierzycki RH, Munro KJ (2014) Relation between speech-in-noise threshold, hearing loss and cognition from 40–69 years of age. PLoS One 9:e107720. doi:10.1371/journal.pone.0107720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morillon B, Lehongre K, Frackowiak RSJ, Ducorps A, Kleinschmidt A, Poeppel D, Giraud A-L (2010) Neurophysiological origin of human brain asymmetry for speech and language. Proc Natl Acad Sci USA 107:18688–18693. doi:10.1073/pnas.1007189107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morillon B, Liégeois-Chauvel C, Arnal LH, Bénar C-G, Giraud A-L (2012) Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Front Psychol 3:248. doi:10.3389/fpsyg.2012.00248

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien LM, Ziegler DA, Deutsch CK, Frazier JA, Herbert MR, Locascio JJ (2011) Statistical adjustments for brain size in volumetric neuroimaging studies: some practical implications in methods. Psychiatry Res Neuroimaging 193:113–122. doi:10.1016/j.pscychresns.2011.01.007

    Article  PubMed  Google Scholar 

  • Overath T, McDermott JH, Zarate JM, Poeppel D (2015) The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat Neurosci 18:903–911. doi:10.1038/nn.4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19:2728–2735. doi:10.1093/cercor/bhp026

    Article  PubMed  PubMed Central  Google Scholar 

  • Peelle JE, Davis MH (2012) Neural oscillations carry speech rhythm through to comprehension. Front Psychol 3:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Peelle JE, Troiani V, Grossman M, Wingfield A (2011) Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci 31:12638–12643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena M, Werker JF, Dehaene-Lambertz G (2012) Earlier speech Exposure does not accelerate speech acquisition. J Neurosci 32:11159–11163

    Article  CAS  PubMed  Google Scholar 

  • Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672

    Article  CAS  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Giard M, Echaliler J (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81

    Article  CAS  PubMed  Google Scholar 

  • Pichora-Fuller MK, Souza PE (2003) Effects of aging on auditory processing of speech. Int J Audiol 42(Suppl 2):2S11-6

    PubMed  Google Scholar 

  • Pickles JO (2012) An introduction to the physiology of hearing, 4th edn. Emerald, London

    Google Scholar 

  • Plack CJ, Barker D, Prendergast G (2014) Perceptual consequences of “hidden” hearing loss. Trends Hear. doi:10.1177/2331216514550621

    PubMed  PubMed Central  Google Scholar 

  • Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693

    Article  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time”. Speech Commun 41:245–255. doi:10.1016/S0167-6393(02)00107-3

    Article  Google Scholar 

  • Popelka MM, Cruickshanks KJ, Wiley TL, Tweed TS, Klein BEK, Klein R (1998) Low prevalence of hearing aid use among older adults with hearing loss: the epidemiology of hearing loss study. J Am Geriatr Soc 46:1075–1078. doi:10.1111/j.1532-5415.1998.tb06643.x

    Article  CAS  PubMed  Google Scholar 

  • Profant O, Škoch A, Balogová Z, Tintěra J, Hlinka J, Syka J (2014) Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging. Neuroscience 260:87–97. doi:10.1016/j.neuroscience.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  • Profant O, Tintěra J, Balogová Z, Ibrahim I, Jilek M, Syka J (2015) Functional changes in the human auditory cortex in ageing. PLoS One 10:e0116692. doi:10.1371/journal.pone.0116692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex 5:323–337

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55:204–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  CAS  PubMed  Google Scholar 

  • Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. NeuroImage 53:1181–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter-Lorenz PA, Park DC (2010) Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci 65B:405–415. doi:10.1093/geronb/gbq035

    Article  PubMed Central  Google Scholar 

  • Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701

    Article  CAS  PubMed  Google Scholar 

  • Roth TN, Hanebuth D, Probst R (2011) Prevalence of age-related hearing loss in Europe: a review. Eur Arch Otorhinolaryngol 268:1101–1107. doi:10.1007/s00405-011-1597-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Rufener KS, Oechslin MS, Wöstmann M, Dellwo V, Meyer M (2016) Age-related neural oscillation patterns during the processing of temporally manipulated speech. Brain Topogr 29:440–458. doi:10.1007/s10548-015-0464-0

    Article  PubMed  Google Scholar 

  • Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730

    Article  PubMed  Google Scholar 

  • Schepers IM, Yoshor D, Beauchamp MS (2015) Electrocorticography reveals enhanced visual cortex responses to visual speech. Cereb Cortex 25:4103–4110. doi:10.1093/cercor/bhu127

    Article  PubMed  Google Scholar 

  • Schneider BA, Pichora-Fuller MK (2001) Age-related changes in temporal processing: implications for speech perception. Semin Hear 22:227–240. doi:10.1055/s-2001-15628

    Article  Google Scholar 

  • Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075

    Article  PubMed  Google Scholar 

  • Sheppard JP, Wang J-P, Wong PC (2011) Large-scale cortical functional organization and speech perception across the lifespan. PLoS One 6:e16510. doi:10.1371/journal.pone.0016510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008

    Article  CAS  PubMed  Google Scholar 

  • Steinhauer K, Abada SH, Pauker E, Itzhak I, Baum SR (2010) Prosody-syntax interactions in aging: event-related potentials reveal dissociations between on-line and off-line measures. Neurosci Lett 472:133–138. doi:10.1016/j.neulet.2010.01.072

    Article  CAS  PubMed  Google Scholar 

  • Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB (2014a) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34:8488–8498

    Article  CAS  PubMed  Google Scholar 

  • Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB (2014b) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34:8488–8498

    Article  CAS  PubMed  Google Scholar 

  • Tisserand DJ, Pruessner JC, Sanz Arigita EJ, van Boxtel MPJ, Evans AC, Jolles J, Uylings HBM (2002) Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage 17:657–669. doi:10.1006/nimg.2002.1173

    Article  PubMed  Google Scholar 

  • Vermeire K, Knoop A, Boel C, Auwers S, Schenus L, Talaveron-Rodriguez M, De Boom C, De Sloovere M (2016) Speech recognition in noise by younger and older adults effects of age, hearing loss, and temporal resolution. Ann Otol Rhinol Laryngol 125:297–302

    Article  PubMed  Google Scholar 

  • Vigneau M, Beaucousin V, Hervé P, Jobard G, Petit L, Crivello F, Mellet E, Zago LMB, Tzourio-Mazoyer N (2011) What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. NeuroImage 54:577–593

    Article  CAS  PubMed  Google Scholar 

  • Wagener KC, Brand T, Kollmeier B (1999a) Entwicklung und Evaluation eines Satztests für die deutsche Sprache III: evaluation des Oldenburger Satztests. Audiol Acoust 38:8695

    Google Scholar 

  • Wagener KC, Brand T, Kollmeier B (1999b) Entwicklung und Evaluation eines Satztests in deutscher Sprache II: optimierung des Oldenburger Satztests. Z Für Audiol 38:44–56

    Article  Google Scholar 

  • Wagener KC, Kühnel V, Kollmeier B (1999c) Entwicklung und Evaluation eines Satztests in deutscher Sprache I: design des Oldenburger Satztests. Z Für Audiol 38:4–15

    Google Scholar 

  • Wiley TL, Chappell R, Carmichael L, Nondahl DM, Cruickshanks KJ (2008) Changes in hearing thresholds over 10 years in older adults. J Am Acad Audiol 19:281–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JT, Darcy I, Newman SD (2016) Bimodal bilingualism as multisensory training? Evidence for improved audiovisual speech perception after sign language exposure. Brain Res 1633:101–110. doi:10.1016/j.brainres.2015.12.046

    Article  CAS  PubMed  Google Scholar 

  • Wingfield A, Peelle JE (2015) The effects of hearing loss on neural processing and plasticity. Front Syst Neurosci 9:35. doi:10.3389/fnsys.2015.00035

    Article  PubMed  PubMed Central  Google Scholar 

  • Wingfield A, Wayland SC, Stine EAL (1992) Adult age differences in the use of prosody for syntactic parsing and recall of spoken sentences. J Gerontol 47:P350–P356. doi:10.1093/geronj/47.5.P350

    Article  CAS  PubMed  Google Scholar 

  • Wingfield A, Lindfield KC, Goodglass H (2000) Effects of age and hearing sensitivity on the use of prosodic information in spoken word recognition. J Speech Lang Hear Res 43:915. doi:10.1044/jslhr.4304.915

    Article  CAS  PubMed  Google Scholar 

  • Wong PC, Uppunda AK, Parrish TB, Dhar S (2008) Cortical mechanisms of speech perception in noise. J Speech Lang Hear Res 51:1026

    Article  PubMed  Google Scholar 

  • Wong PC, Jin JX, Gunasekera GM, Abel R, Lee ER, Dhar S (2009) Aging and cortical mechanisms of speech perception in noise. Neuropsychologia 47:693–703

    Article  PubMed  Google Scholar 

  • Wong PC, Ettlinger M, Sheppard JP, Gunasekera GM, Dhar S (2010) Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 31:471–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Rao A, Zhang Y, Burton PC, Rishiq D, Abrams H (2017) Neuromodulatory effects of auditory training and hearing aid use on audiovisual speech perception in elderly individuals. Front Aging Neurosci 9:30. doi:10.3389/fnagi.2017.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Fimm B (2002) Testbatterie zurAufmerksamkeitsprüfung (TAP). PsyTest, Herzogenrath

    Google Scholar 

  • Zöllig J, Mérillat S, Eschen A, Röcke C, Martin M, Jäncke L (2011) Plasticity and imaging research in healthy aging: core ideas and profile of the International Normal Aging and Plasticity Imaging Center (INAPIC). Gerontology 57:190–192. doi:10.1159/000324307

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation (Grant no. 105314_152905  to MM), the ‘Fonds zur Förderung des akademischen Nachwuchses’ (FAN) of the ‘Zürcher Universitätsvereins’ (ZUNIV) (MM) and by the ‘Forschungskredit’ of the University of Zurich (Grant no. K-60241-01-01 to NG). We thank Dr. Susan Mérillat and Prof. Lutz Jäncke for their support in recruiting older participants through the lhab study (Zöllig et al. 2011) and providing us with the T1-weighted MR sequence and cognitive tasks used in this study. Furthermore, we are indebted to Allison Christen for proofreading the manuscript. During the work on her dissertation, NG was a pre-doctoral fellow of the International Max Planck Research School on the Life Course.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Giroud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giroud, N., Hirsiger, S., Muri, R. et al. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults. Brain Struct Funct 223, 145–163 (2018). https://doi.org/10.1007/s00429-017-1477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1477-0

Keywords

Navigation