Skip to main content

Advertisement

Log in

Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Diffusion-weighted magnetic resonance spectroscopy of brain metabolites offers unique access to compartment-specific microstructural information on neural tissue. Here, we investigated in detail the diffusion characteristics of the neuronal/axonal markers N-acetylaspartate + N-acetyl aspartyl glutamate (tNAA) in a small region of the human corpus callosum at 7 T. The diffusion-weighted spectroscopy data were analyzed by fitting to a model in which information about cross-callosal tract orientation within the spectroscopy volume, obtained from diffusion tensor imaging data, was incorporated. We estimated the microscopic misalignment of axons (σ φ  = 18.6° ± 3.0°) in excellent agreement with independent histological results (σ φ  = 18.1° ± 4.6°) obtained from microscopic analysis of axonal orientations in the body of the corpus callosum from post-mortem human brain slices. We also robustly quantified the diffusion coefficient of tNAA (0.51 ± 0.06 × 10−3 mm2/s) in axonal cytoplasm, unbiased by the tract curvature. This work supports the notion that microscopic axonal misalignment is a dominant microstructural property in white matter tracts and has a strong impact on the evaluation of tissue microstructure using diffusion information, and should therefore be taken into consideration in the evaluation of white matter microstructure. Additionally, this study enabled robust and unbiased assessment of the cytosolic diffusion coefficient of tNAA, a potential biomarker for axonopathy and neuronal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598(1–2):143–153

    Article  CAS  PubMed  Google Scholar 

  • Annese J (2012) The importance of combining MRI and large-scale digital histology in neuroimaging studies of brain connectivity and disease. Front Neuroinform 6:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23(5):794–802

    PubMed  Google Scholar 

  • Assaf Y, Cohen Y (1998a) In vivo and in vitro bi-exponential diffusion of N-acetyl aspartate (NAA) in rat brain: a potential structural probe? NMR Biomed 11(2):67–74

    Article  CAS  PubMed  Google Scholar 

  • Assaf Y, Cohen Y (1998b) Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 131(1):69–85

    Article  CAS  PubMed  Google Scholar 

  • Assaf Y, Freidlin RZ, Rohde GK, Basser PJ (2004) New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 52(5):965–978

    Article  PubMed  Google Scholar 

  • Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59(6):1347–1354

    Article  PubMed  Google Scholar 

  • Avram L, Ozarslan E, Assaf Y, Bar-Shir A, Cohen Y, Basser PJ (2008) Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR Biomed 21(8):888–898

    Article  PubMed  Google Scholar 

  • Budde MD, Frank JA (2012) Examining brain microstructure using structure tensor analysis of histological sections. Neuroimage 63(1):1–10

    Article  PubMed  Google Scholar 

  • de Graaf RA, van Kranenburg A, Nicolay K (2000) In vivo (31)P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys J 78(4):1657–1664

    Article  PubMed Central  PubMed  Google Scholar 

  • Dreher W, Busch E, Leibfritz D (2001) Changes in apparent diffusion coefficients of metabolites in rat brain after middle cerebral artery occlusion measured by proton magnetic resonance spectroscopy. Magn Reson Med 45(3):383–389

    Article  CAS  PubMed  Google Scholar 

  • Ellegood J, Hanstock CC, Beaulieu C (2005) Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy. Magn Reson Med 53(5):1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Ellegood J, Hanstock CC, Beaulieu C (2006) Diffusion tensor spectroscopy (DTS) of human brain. Magn Reson Med 55(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1(2):203–209

    CAS  PubMed  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

    Article  PubMed  Google Scholar 

  • Kan HE, Techawiboonwong A, van Osch MJ, Versluis MJ, Deelchand DK, Henry PG, Marjanska M, van Buchem MA, Webb AG, Ronen I (2012) Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T. Magn Reson Med 67(5):1203–1209

    Article  PubMed  Google Scholar 

  • Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK (2006) Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 21(3):626–632

    Article  CAS  PubMed  Google Scholar 

  • Kroenke CD, Ackerman JJ, Yablonskiy DA (2004) On the nature of the NAA diffusion attenuated MR signal in the central nervous system. Magn Reson Med 52(5):1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. 17th Annual Meeting of International Society for Magnetic Resonance in Medicine, Hawaii, USA, p 3537

  • Leergaard TB, White NS, de Crespigny A, Bolstad I, D’Arceuil H, Bjaalie JG, Dale AM (2010) Quantitative histological validation of diffusion MRI fiber orientation distributions in the rat brain. PLoS ONE 5(1):e8595

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchadour C, Brouillet E, Hantraye P, Lebon V, Valette J (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32(12):2153–2160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merboldt KD, Horstermann D, Hanicke W, Bruhn H, Frahm J (1993) Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29(1):125–129

    Article  CAS  PubMed  Google Scholar 

  • Moonen CT, van Zijl PC, Le Bihan D, DesPres D (1990) In vivo NMR diffusion spectroscopy: 31P application to phosphorus metabolites in muscle. Magn Reson Med 13(3):467–477

    Article  CAS  PubMed  Google Scholar 

  • Neuman CH (1974) Spin-echo of spins diffusing in a bounded medium. J Chem Phys 60(11):4508–4511

    Article  CAS  Google Scholar 

  • Nicolay K, van der Toorn A, Dijkhuizen RM (1995) In vivo diffusion spectroscopy. An overview. NMR Biomed 8(7–8):365–374

    Article  CAS  PubMed  Google Scholar 

  • Nicolay K, Braun KP, Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy. NMR Biomed 14(2):94–111

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Latt J, Stahlberg F, van Westen D, Hagslatt H (2012) The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed 25(5):795–805

    Article  PubMed  Google Scholar 

  • Pfeuffer J, Tkac I, Gruetter R (2000) Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 20(4):736–746

    Article  CAS  PubMed  Google Scholar 

  • Posse S, Cuenod CA, Le Bihan D (1993) Human brain: proton diffusion MR spectroscopy. Radiology 188(3):719–725

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  CAS  PubMed  Google Scholar 

  • Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20(3):1714–1722

    Article  PubMed  Google Scholar 

  • Sotiropoulos SN, Behrens TE, Jbabdi S (2012) Ball and rackets: inferring fiber fanning from diffusion-weighted MRI. Neuroimage 60(2):1412–1425

    Article  PubMed Central  PubMed  Google Scholar 

  • Tallantyre EC, Bo L, Al-Rawashdeh O, Owens T, Polman CH, Lowe JS, Evangelou N (2010) Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult Scler 16(4):406–411

    Article  PubMed  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay J, Hallock K, Erb K, Kim DS, Ronen I (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Magn Reson Med 58(5):1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay J, Hallock K, Ducros M, Kim DS, Ronen I (2008) Diffusion tensor spectroscopy and imaging of the arcuate fasciculus. Neuroimage 39(1):1–9

    Article  PubMed Central  PubMed  Google Scholar 

  • Valette J, Guillermier M, Besret L, Hantraye P, Bloch G, Lebon V (2007) Isoflurane strongly affects the diffusion of intracellular metabolites, as shown by 1H nuclear magnetic resonance spectroscopy of the monkey brain. J Cereb Blood Flow Metab 27(3):588–596

    Article  CAS  PubMed  Google Scholar 

  • van der Toorn A, Dijkhuizen RM, Tulleken CA, Nicolay K (1996) Diffusion of metabolites in normal and ischemic rat brain measured by localized 1H MRS. Magn Reson Med 36(6):914–922

    Article  PubMed  Google Scholar 

  • van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD (1996) Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 34(1):5–10

    Article  PubMed  Google Scholar 

  • van Gelderen P, DesPres D, van Zijl PC, Moonen CT (1994) Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. J Magn Reson B 103(3):255–260

    Article  PubMed  Google Scholar 

  • Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138

    Article  CAS  PubMed  Google Scholar 

  • Wood ET, Ronen I, Techawiboonwong A, Jones CK, Barker PB, Calabresi P, Harrison D, Reich DS (2012) Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy. J Neurosci 32(19):6665–6669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Hubbard PL, Parker GJ, Alexander DC (2011) Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56(3):1301–1315

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Ronen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronen, I., Budde, M., Ercan, E. et al. Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology. Brain Struct Funct 219, 1773–1785 (2014). https://doi.org/10.1007/s00429-013-0600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0600-0

Keywords

Navigation