Skip to main content
Log in

Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The adult brain is highly plastic and tends to undergo substantial reorganization after injury to compensate for the lesion effects. It has been shown that such reorganization mainly relies on anatomical and biochemical modifications of the remaining cells which give rise to a network rewiring without reinstating the original morphology of the damaged region. However, few studies have analyzed the neurorepair potential of a neurogenic structure. Thus, the aim of this work was to analyze if the DG could restore its original morphology after a lesion and to establish if the structural reorganization is accompanied by behavioral and electrophysiological recovery. Using a subepileptogenic injection of kainic acid (KA), we induced a focal lesion in the DG and assessed in time (1) the loss and recovery of dependent and non dependent DG cognitive functions, (2) the anatomical reorganization of the DG using a stereological probe and immunohistochemical markers for different neuronal maturation stages and, (3) synaptic plasticity as assessed through the induction of in vivo long-term potentiation (LTP) in the mossy fiber pathway (CA3-DG). Our results show that a DG focal lesion with KA leads to a well delimited region of neuronal loss, disorganization of the structure, the loss of associated mnemonic functions and the impairment to elicit LTP. However, behavioral and synaptic plasticity expression occurs in a time dependent fashion and occurs along the morphological restoration of the DG. These results provide novel information on neural plasticity events associated to functional reorganization after damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arias C, Becerra-García F, Arrieta I, Tapia R (1998) The protein phosphatase inhibitor okadaic acid induces heat shock protein expression and neurodegeneration in rat hippocampus in vivo. Exp Neurol 153(2):242–254

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Ayala GX, Tapia R (2008) HSP70 expression protects against hippocampal neurodegeneration induced by endogenous glutamate in vivo. Neuropharmacology 55(8):1383–1390

    Article  PubMed  CAS  Google Scholar 

  • Bendel O, Bueters T, von Euler M, Ove Ogren S, Sandin J, von Euler G (2005) Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cerel Blood Flow Metab 25:1586–1595

    Article  CAS  Google Scholar 

  • Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94:10432–10437

    Article  PubMed  CAS  Google Scholar 

  • Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH (2007) Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 27:4101–4109

    Article  PubMed  CAS  Google Scholar 

  • Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    Article  PubMed  CAS  Google Scholar 

  • Calixto E, Thiels E, Klann E, Barrionuevo G (2003) Early maintenance of hippocampal mossy fiber–long-term potentiation depends on protein and RNA synthesis and presynaptic granule cell integrity. J Neurosci 23:4842–4849

    PubMed  CAS  Google Scholar 

  • Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Chesselet MF (2002) Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci 22:6062–6070

    PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  • Del Turco D, Gebhardt C, Burbach GJ, Pleasure SJ, Lowenstein DH, Deller T (2004) Laminar organization of the mouse dentate gyrus: insights from BETA2/Neuro D mutant mice. J Comp Neurol 477:81–95

    Article  PubMed  Google Scholar 

  • Derrick BE, Weinberger SB, Martinez JL Jr (1991) Opioid receptors are involved in an NMDA receptor-independent mechanism of LTP induction at hippocampal mossy fiber-CA3 synapses. Brain Res Bull 27:219–223

    Article  PubMed  CAS  Google Scholar 

  • Derrick BE, Rodriguez SB, Lieberman DN, Martinez JL Jr (1992) Mu opioid receptors are associated with the induction of hippocampal mossy fiber long-term potentiation. J Pharmacol Exp Ther 263:725–733

    PubMed  CAS  Google Scholar 

  • Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895–14900

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Csernansky CA, Goico B, Csernansky JG (2003) Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci 23:1742–1749

    PubMed  CAS  Google Scholar 

  • Duveau V, Madhusudan A, Caleo M, Knuesel I, Fritschy JM (2011) Impaired reelin processing and secretion by Cajal–Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus 21:935–944

    PubMed  CAS  Google Scholar 

  • Eisch AJ, Mandyam CD (2006) Adult neurogenesis and central nervous system cell cycle analysis: novel tools for exploration of the neural causes and correlates of psychiatric disorders. In: Janigro D (ed) The cell cycle in the Central Nervous System. Humana Press, NJ, pp 335–356

    Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  PubMed  CAS  Google Scholar 

  • Escobar ML, Barea-Rodriguez EJ, Derrick BE, Reyes JA, Martinez JL Jr (1997) Opioid receptor modulation of mossy fiber synaptogenesis: independence from long-term potentiation. Brain Res 751:330–335

    Article  PubMed  CAS  Google Scholar 

  • Escobar ML, Figueroa-Guzman Y, Gomez-Palacio-Schjetnan A (2003) In vivo insular cortex LTP induced by brain-derived neurotrophic factor. Brain Res 991:274–279

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Palacio-Schjetnan A, Escobar ML (2008) In vivo BDNF modulation of adult functional and morphological synaptic plasticity at hippocampal mossy fibers. Neurosci Lett 445:62–67

    Article  PubMed  CAS  Google Scholar 

  • Gray WP, Sundstrom LE (1998) Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 790:52–59

    Article  PubMed  CAS  Google Scholar 

  • Gu P, Li Y, Shang Y, Hou Y, Zhao S (2010) Proliferation changes in dentate gyrus of hippocampus during the first week following kainic acid-induced seizures. Yakugaku Zasshi 130:1751–1754

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147(Pt 3):229–263

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Ortega K, Ferrera P, Arias C (2007) Sequential expression of cell-cycle regulators and Alzheimer’s disease-related proteins in entorhinal cortex after hippocampal excitotoxic damage. J Neurosci Res 85:1744–1751

    Article  PubMed  CAS  Google Scholar 

  • Hodge RD, Kowalczyk TD, Wolf SA, Encinas JM, Rippey C, Enikolopov G, Kempermann G, Hevner RF (2008) Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717

    Article  PubMed  CAS  Google Scholar 

  • Jessberger S, Romer B, Babu H, Kempermann G (2005) Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196:342–351

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638

    PubMed  CAS  Google Scholar 

  • Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    Article  PubMed  CAS  Google Scholar 

  • Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  • Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, Weiss S (2007) Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27:983–997

    PubMed  CAS  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  • Ledergerber D, Fritschy JM, Kralic JE (2006) Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy. Exp Neurol 199:130–142

    Article  PubMed  Google Scholar 

  • LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10:1062–1069

    PubMed  CAS  Google Scholar 

  • Lee I, Kesner RP (2004) Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14:301–310

    Article  PubMed  Google Scholar 

  • Maren S, Aharonov G, Fanselow M (1997) Neurotoxiclesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88:261–274

    Article  PubMed  CAS  Google Scholar 

  • Mumby DG, Gaskin S, Glenn MJ, Schramek TE, Lehmann H (2002) Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9:49–57

    Article  PubMed  Google Scholar 

  • Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa E, Aimi Y, Yasuhara O, Tooyama I, Shimada M, McGeer PL, Kimura H (2000) Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia 41:10–18

    Article  PubMed  CAS  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–1794

    Article  PubMed  CAS  Google Scholar 

  • Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y (2005) Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 82:609–621

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Sawamoto K (2008) Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 363:2111–2122

    Article  PubMed  Google Scholar 

  • Parent JM, Valentin VV, Lowenstein DH (2002) Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci 22:3174–3188

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  • Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    Article  PubMed  CAS  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103:17501–17506

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, Goodman JH, Sollas AL (2000) Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 20:6144–6158

    PubMed  CAS  Google Scholar 

  • Schjetnan AG, Escobar ML (2010) In vivo BDNF modulation of hippocampal mossy fiber plasticity induced by high frequency stimulation. Hippocampus. doi:10.1002/hipo.20866

    PubMed  Google Scholar 

  • Sigler A, Mohajerani MH, Murphy TH (2009) Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice. Proc Natl Acad Sci USA 106:11759–11764

    Article  PubMed  CAS  Google Scholar 

  • Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85:2423–2431

    PubMed  CAS  Google Scholar 

  • Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814

    Article  PubMed  Google Scholar 

  • Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528

    Article  PubMed  CAS  Google Scholar 

  • Sun D, McGinn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204:264–272

    Article  PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Kee N, Preston E, Wojtowicz JM (2005) Electrophysiological corre lates of neural plasticity compensating for ischemia-induced damage in the hippocampus. Exp Brain Res 165:250–260

    Article  PubMed  Google Scholar 

  • Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16:296–304

    Article  PubMed  Google Scholar 

  • Winship IR, Murphy TH (2008) In vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke. J Neurosci 28:6592–6606

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 98:5874–5879

    Article  PubMed  CAS  Google Scholar 

  • Yu TS, Zhang G, Liebl DJ, Kernie SG (2008) Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors. J Neurosci 28:12901–12912

    Article  PubMed  CAS  Google Scholar 

  • Zepeda A, Vaca L, Arias C, Sengpiel F (2003) Reorganization of visual cortical maps after focal ischemic lesions. J Cereb Blood Flow Metab 23:811–820

    Article  PubMed  Google Scholar 

  • Zepeda A, Sengpiel F, Guagnelli MA, Vaca L, Arias C (2004) Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits. J Neurosci 24:1812–1821

    Article  PubMed  CAS  Google Scholar 

  • Zepeda A, Michel G, Aguilar-Arredondo A, Arias C (2009) Neurogenesis after brain stroke: is there a relationship with functional recovery? Curr Trends Neurol 3:33–44

    Google Scholar 

  • Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pedro Medina, Miguel Tapia, Patricia Ferrera and Alicia Sampieri for technical assistance. We thank Verdon Taylor for providing facilities in the development of histochemical procedures. This project was supported by DGAPA-PAPIIT IN215609, IN213210 and CONACyT 60851.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica Zepeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zepeda, A., Aguilar-Arredondo, A., Michel, G. et al. Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat. Brain Struct Funct 218, 437–453 (2013). https://doi.org/10.1007/s00429-012-0407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0407-4

Keywords

Navigation