Skip to main content
Log in

The Role of the Dentate Gyrus in Mediating Hippocampal Functions: The Epileptic Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Temporal lobe epilepsy (TE) is characterized by loss of hippocampal cells, often leading to hippocampal sclerosis, subsequent reorganization of the hippocampal network, and deficits in declarative memory. Despite a huge amount of experimental, preclinical, and clinical research, there is still limited understanding of the mechanisms underlying the development of TE. The dentate gyrus (DG) has been suggested to play a decisive role in the mechanisms of the development of this disease. The protective function of the DG, which is based on the low excitability of granule neurons and protects hippocampal pyramidal cells from hyperactivation under strong excitatory influences, is believed to be impaired in TE. Loss of mossy cells has been found in the hilus of the DG in patients with temporal lobe epilepsy. Some authors consider mossy cell vulnerability a critical factor in the development of TE: these neurons normally behave as circuit breakers, and their death breaks the natural neural network, leading to pathological activity. The present paper discusses changes in the morphological and functional properties of the DG in the epileptic brain, the roles of mossy fiber sprouting and neurogenesis in the development of TE, and impairments to the cognitive functions of the hippocampus when the dentate gyrus loses its protective role in conditions of hyperactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, B., Lee, M., Fahnestock, M., and Racine, R., “Long-term potentiation trains induce mossy fiber sprouting,” Brain Res., 775, 193–7 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Avanzi, R. D., Cavarsan, C. F., and Santos, J. G., Jr., et al., “Basal dendrites are present in newly born dentate granule cells of young but not aged pilocarpine-treated chronic epileptic rats,” Neuroscience, 170, 687–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Axmacher, N., Elger, C. E., and Fell, J., “Ripples in the medial temporal lobe are relevant for human memory consolidation,” Brain, 131, 1806–17 (2008).

    Article  PubMed  Google Scholar 

  • Babb, T. L. and Brown, W. J., “Pathological findings in epilepsy,” in: Surgical Treatment of the Epilepsies, Engel, J., Jr. (ed.), Raven Press, New York (1987), pp. 511–540.

    Google Scholar 

  • Babb, T. L., Kupfer, W. R., Pretorius, J. K., et al., “Synaptic reorganization by mossy fibers in human epileptic fascia dentata,” Neuroscience, 42, 351–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Beck, H., Blümcke, I., Kral, T., et al., “Properties of a delayed rectifier potassium current in dentate granule cells isolated from the hippocampus of patients with chronic temporal lobe epilepsy,” Epilepsia, 37, 892–901 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Bekirov, I. H., Nagy, V., Svoronos, A., et al., “Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway,” Hippocampus, 18, 349–63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengzon, J., Kokaia, Z., Elmer, E., et al., “Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures,” Proc. Natl. Acad. Sci. USA, 94, 10,432–10,437 (1997).

  • Bielefeld, P., van Vliet, E. A., Gorter, J. A., et al., “Different subsets of newborn granule cells: a possible role in epileptogenesis?” Eur. J. Neurosci., 39, No. 1, 1–11 (2014).

    Article  PubMed  Google Scholar 

  • Binder, D. K., Croll, S. D., Gall, C. M., and Scharfman, H. E., “BDNF and epilepsy: too much of a good thing?” Trends Neurosci., 24, 47–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt, S.. and Covolan, L. C. H., Hamani, C., et al., “Replacement of asymmetric synaptic profi les in the molecular layer of dentate gyrus following cycloheximide in the pilocarpine model in rats,” Front. Psychiatry, 6, 157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Blümcke, I., Zuschratter, W., Schewe, J. C., et al., “Cellular pathology of hilar neurons in Ammon’s horn sclerosis,” J. Comp. Neurol., 414, 437–453 (1999).

    Article  PubMed  Google Scholar 

  • Bragin, A., Benassi, S. K., Kheiri, F., and Engel, J., Jr., “Further evidence that pathological high frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus,” Epilepsia, 52, No. 1, 45–52 (2011).

  • Bragin, A., Engel, J. Jr., Wilson, C. L., et al., “High-frequency oscillations in human brain,” Hippocampus, 9, 137–142 (1999a).

    Article  CAS  PubMed  Google Scholar 

  • Bragin, A., Engel, J. Jr., Wilson, C. L., et al., “Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures,” Epilepsia, 40, 127–137 (1999b).

    Article  CAS  PubMed  Google Scholar 

  • Bragin, A., Jandó, G., Nádasdy, Z., et al., “Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat,” J. Neurophysiol., 73, 1691–1705 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster, P. S. and Dudek, F. E., “Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization,” J. Neurophysiol., 77, 2685–2696 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster, P. S. and Jongen-Rêlo, A. L., “Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats,” J. Neurosci., 19, No. 21, 9519–9529 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckmaster, P. S. and Lew, F. H., “Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy,” J. Neurosci., 31, 2337–2347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckmaster, P. S. and Schwartzkroin, P. A., “Hippocampal mossy cell function: a speculative view,” Hippocampus, 4, 393–402 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster, P. S., “Mossy cell dendritic structure quantified and compared with other hippocampal neurons labeled in rats in vivo,” Epilepsia, 53, Suppl. 1, 9–17 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckmaster, P. S., Abrams, E., and Wen, X., “Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy,” J. Comp. Neurol., 525, No. 11, 2592–2610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckmaster, P. S., Strowbridge, B. W., Kunkel, D. D., et al., “Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice,” Hippocampus, 2, 349–362 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster, P., “Does mossy fiber sprouting give rise to the epileptic state?” Adv. Experim. Med. Biol., 813, 161–168 (2014).

    Article  Google Scholar 

  • Burgess, N., Maguire, E., and O’Keefe, J., “The human hippocampus and spatial and episodic memory,” Neuron, 35, 625–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cameron, H. A., Woolley, C. S., McEwen, B. S., and Gould, E., “Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat,” Neuroscience, 56, 337–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Cameron, M. C., Zhan, R., and Nadler, J. V., “Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy,” J. Comp. Neurol., 519, 2175–2192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavarsan, C. F., Malheiros, J., Hamani, C., et al., “Is mossy fiber sprouting a potential therapeutic target for epilepsy?” Front. Neurol., 9, 1023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavazos, J. E., Golarai, G., and Sutula, T. P., “Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence,” J. Neurosci., 11, No. 9, 2795–2803 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, K.-O., Lybrand, Z. R., Ito, N., et al., “Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline,” Nat. Commun., 6, 6606 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Colling, S., Khana, M., Collinge, J., and Jefferys, J., “Mossy fibre reorganization in the hippocampus of prion protein null mice,” Brain Res., 755, 28–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Cossart, R., Dinocourt, C., Hirsch, J. C., et al., “Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy,” Nat. Neurosci., 4, 52–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Coulter, D. A. and Carlson, G. C., “Functional regulation of the dentate gyrus by GABA-mediated inhibition,” Prog. Brain Res., 163, 235– 243 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Covolan, L., Ribeiro, L. T., Longo, B. M., and Mello, L. E., “Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus,” Hippocampus, 10, No. 2, 169–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Cronin, J., Obenaus, A., Houser, C. R., and Dudek, F. E., “Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers,” Brain Res., 573, No. 2, 305–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Das, A., Wallace, G. C., Holmes, C., et al., “Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors,” Neuroscience, 220, 237–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Dashtipour, K., Tran, P. H., Okazaki, M. M., et al., “Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer,” Brain Res., 890, 261–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  • de Lanerolle, N. C., Brines, M. L., Kim, J. H., et al., “Neurochemical remodeling of the hippocampus in human temporal lobe epilepsy,” in: Epilepsy Research Supplement, Engel, J. Jr. (ed.), Elsevier Science, Amsterdam (1992), Vol. 1, No. 9, pp. 205–220.

  • Dengler, C. G. and Coulter, D. A., “Normal and epilepsy-associated pathologic function of the dentate gyrus,” Prog. Brain Res., 226, 155–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek, F., “Seizure-induced neurogenesis and epilepsy: involvement of ectopic granule cells?” Epilepsy Curr., 4, 103–104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • El Bahh, B., Lespinet, V., Lurton, D., et al., “Correlations between granule cell dispersion, mossy fiber sprouting, and hippocampal cell loss in temporal lobe epilepsy,” Epilepsia, 40, 1393–1401 (1999).

    Article  PubMed  Google Scholar 

  • Elmer, E., Kokaia, Z., Kokaia, M., et al., “Mossy fibre sprouting: evidence against a facilitatory role in epileptogenesis,” Neuroreport, 8, 1193–1196 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Engel, J. Jr., “A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology,” Epilepsia, 42, 796–803 (2001).

    Article  PubMed  Google Scholar 

  • Frauscher, B., von Ellenrieder, N., Ferrari-Marinho, T., et al., “Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves,” Brain, 138, 1629–1641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Freund, T. F. and Buzsaki, G., “Interneurons of the hippocampus,” Hippocampus, 4, 347–470 (1996).

    Google Scholar 

  • Gabriel, S., Njunting, M., Pomper, J. K., et al., “Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis,” J. Neurosci., 24, 10416–10430 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, P. E., Kesner, R. P., and Lee, I., “Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1,” Hippocampus, 11, 626–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gorter, J., van Vliet, E., Aronica, E., and Lopes da Silva, F., “Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons,” Eur. J. Neurosci. Biobehav. Rev., 13, 657–669 (2001).

    Article  CAS  Google Scholar 

  • Haglid, K. G., Wang, S., Qiner, Y., and Hamberger, A., “Excitotoxicity. Experimental correlates to human epilepsy,” Mol. Neurobiol., 9, 259–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Harvey, B. D. and Sloviter, R. S., “Hippocampal granule cell activity and c-Fos expression during spontaneous seizures in awake, chronically epileptic, pilocarpine-treated rats: implications for hippocampal epileptogenesis,” J. Comp. Neurol., 488, 442–463 (2005).

    Article  PubMed  Google Scholar 

  • Heinemann, U., Beck, H., Dreier, J. P., et al., “The dentate gyrus as a regulated gate for the propagation of epileptiform activity,” Epilepsy Res. Suppl., 7, 273–280 (1992).

    CAS  PubMed  Google Scholar 

  • Hendricks, L., Chen, Y., Bensen, A., et al., “Short-term depression of sprouted mossy fiber synapses from adult-born granule cells,” J. Neurosci., 37, 5722–5735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heng, K., Haney, M., and Buckmaster, P., “High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy,” Epilepsia, 54, 1535–1541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hester, M. S. and Danzer, S. C., “Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity,” J. Neurosci., 33, 8926–8936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtmaat, A., Gorter, J., De Wit, J., et al., “Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fi ber sprouting,” Exp. Neurol., 182, 142–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hosford, B. E., Liska, J. P., and Danzer, S. C., “Ablation of newly generated hippocampal granule cells has disease-modifying effects in epilepsy,” J. Neurosci., 36, No. 43, 11013–11023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houser, C. R., “Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy,” Brain Res., 535, 195–204 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Houser, C. R., “Morphological changes in the dentate gyrus in human temporal lobe epilepsy,” Epilepsy Res. Suppl., 7, 223–234 (1992).

    CAS  PubMed  Google Scholar 

  • Hsu, D., “The dentate gyrus as a fi lter or gate: a look back and a look ahead,” Prog. Brain Res., 163, 601–613 (2007).

    Article  PubMed  Google Scholar 

  • Ikegaya, Y., “Abnormal targeting of developing hippocampal mossy fibers after epileptiform activities via L-type Ca2+ channel activation in vitro,” J. Neurosci., 19, 802–812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inostroza, M., Brotons-Mas, J. R., Laurent, F., et al., “Specific impairment of ‘what-where-when’ episodic-like memory in experimental models of temporal lobe epilepsy,” J. Neurosci., 33, 17749–17762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isokawa, M., Levesque, M. F., Babb, T. L., and Engel, J., Jr., “Single mossy fiber axonal systems of human dentate granule cells studied in hippocampal slices from patients with temporal lobe epilepsy,” J. Neurosci., 13, No. 4, 1511–1522 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, J., Banks, S., Zelmann, R., et al., “Spontaneous ripples in the hippocampus correlate with epileptogenicity and not memory function in patients with refractory epilepsy,” Epilepsy Behav., 62, 258–266 (2016).

    Article  PubMed  Google Scholar 

  • Jacobs, J., LeVan, P., Chander, R., et al., “Interictal highfrequency oscillations (80–500Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain,” Epilepsia, 49, 1893–1907 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakubs, K., Nanobashvili, A., Bonde, S., et al., “Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability,” Neuron, 52, 1047–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Jessberger, S. and Parent, J. M., “Epilepsy and adult neurogenesis,” Cold Spring Harb. Perspect. Biol., 7, a020677 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessberger, S., Römer, B., Babu, H., and Kempermann, G., “Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells,” Exp. Neurol., 196, 342–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, A. M., Sugo, E., Barreto, D., et al., “The severity of gliosis in hippocampal sclerosis correlates with pre-operative seizure burden and outcome after temporal lobectomy,” Mol. Neurobiol., 53, 5446– 5456 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Jung, K. H., Chu, K., Kim, M., et al., “Continuous cytosine-b-Darabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus,” Eur. J. Neurosci., 19, 3219– 3226 (2004).

    Article  PubMed  Google Scholar 

  • Jung, K. H., Chu, K., Lee, S. T., et al., “Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus,” Neurobiol. Dis., 23, 237–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kahn, J. B., Port, R. G., Yue, C., et al., “Circuit-based interventions in the dentate gyrus rescue epilepsy-associated cognitive dysfunction,” Brain, 142, No. 9, 2705–2721 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlov, V. A., “Epilepsy as a clinical and neurophysiological challenge,” Zh. Nevrol. Psikhiat., 100, No. 9, 7–15 (2000).

    CAS  Google Scholar 

  • Kelly, T. and Beck, H., “Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus,” Epilepsia, 58, 160– 171 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kheirbek, M. A., Drew, L. J., Burghardt, N. S., et al., “Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus,” Neuron, 77, 955–968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kienzler, F., Norwood, B. A., and Sloviter, R. S., “Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation-induced status epilepticus in the mouse,” J. Comp. Neurol., 515, No. 2, 181–196 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama, R., Yamada, M. K., Fujisawa, S., et al., “Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus,” J. Neurosci., 24, 7215–7224 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kron, M. M., Zhang, H., and Parent, J. M., “The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity,” J. Neurosci., 30, 2051–2059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krook-Magnuson, E., Armstrong, C., Bui, A., et al., “In vivo evaluation of the dentate gate theory in epilepsy,” J. Physiol., 593, No. 10, 2379– 2388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., Lemieux, L., Bell, G., et al., “Cerebral damage in epilepsy: a population- based longitudinal quantitative MRI study,” Epilepsia, 46, 1482–1494 (2005).

    Article  PubMed  Google Scholar 

  • Longo, B., Covolan, L., Chadi, G., and Mello, L., “Sprouting of mossy fibers and the vacating of postsynaptic targets in the inner molecular layer of the dentate gyrus,” Exp. Neurol., 181, 57–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Loscher, W. and Schmidt, D., “New horizons in the development of antiepileptic drugs: the search for new targets,” Epilepsy Res., 60, 77–159 (2004).

    PubMed  Google Scholar 

  • Lothman, E. and Bertram, E., “Epileptogenic effects of status epilepticus,” Epilepsia, 34, 59–70 (1993).

    Article  Google Scholar 

  • Lowenstein, D. H., “Structural reorganization of hippocampal networks caused by seizure activity,” Int. Rev. Neurobiol., 45, 209–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Malheiros, J., Paiva, F., Longo, B., et al., “Manganese-enhanced MRI: biological applications in neuroscience,” Front. Neurol., 6, 161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathern, G. W., Babb, T. L., and Armstrong, D. L., “Hippocampal sclerosis,” in: Epilepsy: a Comprehensive Textbook, Engel, J., Jr. and Pedley, T. A. (eds.), Lippincott-Raven Publishers, Philadelphia (1997), pp, 133–155.

    Google Scholar 

  • Mathern, G. W., Pretorius, J. K., Leite, J. P., et al., “Hippocampal AMPA and NMDA mRNA Levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy,” Epilepsy Res., 32, 154–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mathern, G., Cifuentes, F., Leite, J., et al., “Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model,” Electroencephalogr. Clin. Neurophysiol., 87, 326–339 (1993).

    Article  CAS  PubMed  Google Scholar 

  • McNamara, J., “Cellular and molecular basis of epilepsy,” J. Neurosci., 14, 3413–3425 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello, L. and Covolan, L., “Neuronal injury and progressive cell damage,”in: Encyclopedia of Basic Epilepsy Research, Schwartzkroin, P. A. (ed.), Academic Press, London (2009), pp. 125–128.

  • Mello, L., Cavalheiro, E., Tan, A., et al., “Granule cell dispersion in relation to mossy fiber sprouting, hippocampal cell loss, silent period and seizure frequency in the pilocarpine model of epilepsy,” Epilepsy Res., 9, 51–59 (1992).

    CAS  Google Scholar 

  • Mitsueda-Ono, T., Ikeda, A., Sawamoto, N., et al., “Internal structural changes in the hippocampus observed on 3-tesla MRI in patients with mesial temporal lobe epilepsy,” Intern. Med., 52, 877–885 (2013).

    Article  PubMed  Google Scholar 

  • Morimoto, K., Fahnestock, M., and Racine, R. J., “Kindling and status epilepticus models of epilepsy: rewiring the brain,” Prog. Neurobiol., 73, 1–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Myers, C. E., Bermudez-Hernandez, K., and Scharfman, H. E., “The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function,” PLoS One, 8, e68208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadler, J. V., “The recurrent mossy fiber pathway of the epileptic brain,” Neurochem. Res., 28, 1649–1658 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Nadler, J. V., Perry, B. W., and Cotman, C. W., “Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid,” Brain Res., 182, 1–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Nairismägi, J., Pitkänen, A., Narkilahti, S., et al., “Manganese-enhanced magnetic resonance imaging of mossy fi ber plasticity in vivo,” Neuro- Image, 30, 130–5 (2006).

    PubMed  Google Scholar 

  • Nakashiba, T., Cushman, J. D., Pelkey, K. A., et al., “Young dentate granule cells mediate pattern separation, whereas old granule Cells facilitate pattern completion,” Cell, 149, 188–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissinen, J., Lukasiuk, K., and Pitkänen, A., “Is mossy fiber sprouting present at the time of the fi rst spontaneous seizures in rat experimental temporal lobe epilepsy?” Hippocampus, 11, 299–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Obenaus, A., Esclapez, M., and Houser, C. R., “Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures,” J. Neurosci., 13, No. 10, 4470– 4485 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olney, J. W., “Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate,” Science, 164, 719–721 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Parent, J. M., Elliott, R. C., Pleasure, S. J., et al., “Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy,” Ann. Neurol., 59, 81–91 (2006).

    Article  PubMed  Google Scholar 

  • Parent, J. M., Tada, E., Fike, J. R., and Lowenstein, D. H., “Inhibition of dentate granule cell neurogenesis with brain irradiation does not pre vent seizure-induced mossy fi ber synaptic reorganization in the rat,” J. Neurosci., 19, 4508–4519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent, J., Yu, T., Leibowitz, R., et al., “Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus,” J. Neurosci., 17, 3727–3738 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekcec, A., Lupke, M., Baumann, R., et al., “Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression,” Hippocampus, 21, 866–876 (2011).

    PubMed  Google Scholar 

  • Pierce, J., Melton, J., Punsoni, M., et al., “Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures,” Exp. Neurol., 196, 316–331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce, J., Punsoni, M., McCloskey, D., and Scharfman, H., “Mossy cell axon synaptic contacts on ectopic granule cells that are born following pilocarpine-induced seizures,” Neurosci. Lett., 422, 136–140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polli, R., Malheiros, J., Dos Santos, R., et al., “Changes in hippocampal volume are correlated with cell loss but not with seizure frequency in two chronic models of temporal lobe epilepsy,” Front. Neurol., 5, 111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pun, R. Y., Rolle, I. J., Lasarge, C. L., et al., “Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy,” Neuron, 75, 1022–1034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raedt, R., Boon, P., Persson, A., et al., “Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition,” Epilepsia, 48, 1952–1963 (2007).

    Article  PubMed  Google Scholar 

  • Ratzliff, A. H., Howard, A. L., Santhakumar, V., et al., “Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: Implications for epileptogenesis,” J. Neurosci., 24, No. 9, 2259– 2269 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratzliff, A. H., Santhakumar, V., Howard, A., and Soltesz, I., “Mossy cells in epilepsy: Rigor mortis or vigor mortis?” Trends Neurosci., 25, 140–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Ren, E. and Curia, G., “Synaptic reshaping and neuronal outcomes in the temporal lobe epilepsy,” Int. J. Mol. Sci., 22, No. 8, 3860 (2021).

  • Represa, A., Jorquera, I., Le Gal La Salle, G., and Ben-Ari, Y., “Epilepsy induced collateral sprouting of hippocampal mossy fibers: does it induce the development of ectopic synapses with granule cell dendrites?” Hippocampus, 3, No. 3, 257–268 (1993).

  • Reyes-Garcia, S. Z., Scorza, C. A., Araújo, N. S., et al., “Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy,” Sci. Rep., 8, 7116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribak, C. E., Shapiro, L. A., Yan, X.-X., et al., “Seizure-induced formation of basal dendrites on granule cells of the rodent dentate gyrus,” Jasper’s Basic Mechanisms of the Epilepsies, Noebels, J. L. et al. (eds.), National Center for Biotechnology Information (US), Bethesda (MD) (2012).

  • Roth, B. L., “DREADDs for neuroscientists,” Neuron, 89, No. 4, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez, R., Ribak, C., and Shapiro, L., “Synaptic connections of hilar basal dendrites of dentate granule cells in a neonatal hypoxia model of epilepsy,” Epilepsia, 53, 98–108 (2012).

    Article  PubMed  Google Scholar 

  • Santhakumar, V., Bender, R., Frotscher, M., et al., “Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the ‘irritable mossy cell’ hypothesis,” J. Physiol., 524, No. 1, 117–134 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman, H. E. and Myers, C. E., “Hilar mossy cells of the dentate gyrus: a historical perspective,” Front. Neural Circuits, 6, 106 (2012).

    PubMed  Google Scholar 

  • Scharfman, H. E. and Pierce, J. P., “New insights into the role of hilar ectopic granule cells in the dentate gyrus based on quantitative anatomic analysis and three-dimensional reconstruction,” Epilepsia, 53, Suppl. 1, 98–108 (2012).

    Google Scholar 

  • Scharfman, H. E., “Epilepsy as an example of neural plasticity,” Neuroscientist, 8, 154–173 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharfman, H. E., “The role of nonprincipal cells in dentate gyrus excitability and its relevance to animal models of epilepsy and temporal lobe epilepsy,” Adv. Neurol., 79, 805–820 (1999).

    CAS  PubMed  Google Scholar 

  • Scharfman, H. E., Goodman, J. H., and Sollas, A. L., “Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis,” J. Neurosci., 20, 6144–6158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman, H. E., Synaptic Plasticity and Transsynaptic Signalling, Stanton, P. K. et al. (eds.) Springer (2005), pp. 201–220.

    Chapter  Google Scholar 

  • Scharfman, H., Goodman, J., and McCloskey, D., “Ectopic granule cells of the rat dentate gyrus,” Dev. Neurosci., 29, 14–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schmeiser, B., Li, J., Brandt, A., Zentner, J., et al., “Different mossy fiber sprouting patterns in ILAE hippocampal sclerosis types,” Epilepsy Res., 136, 115–122 (2017).

    Article  PubMed  Google Scholar 

  • Scott, B., Wojtowicz, J., and Burnham, W., “Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures,” Exp. Neurol., 165, 231–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L. A., Figueroa-Aragon, S., and Ribak, C. E., “Newly generated granule cells show rapid neuroplastic changes in the adult rat dentate gyrus during the first five days following pilocarpine-induced seizures,” Eur. J. Neurosci., 26, No. 3, 583–592 (2007).

    Article  PubMed  Google Scholar 

  • Shibata, K., Nakahara, S., Shimizu, E., et al., “Repulsive guidance molecule a regulates hippocampal mossy fiber branching in vitro,” Neuroreport, 24, 609–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Sloviter, R. S., “Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABAmediated mechanisms that regulate excitability in vivo,” Hippocampus, 1, 31–40 (1991a).

    Article  CAS  PubMed  Google Scholar 

  • Sloviter, R. S., “Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy,” Hippocampus, 1, 41–66 (1991b).

    Article  CAS  PubMed  Google Scholar 

  • Sloviter, R. S., “Status epilepticus-induced neuronal injury and network reorganization,” Epilepsia, 40, Suppl. 1, S34–9, Discuss. S40-1 (1999).

  • Sloviter, R. S., “The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy,” Ann. Neurol., 35, 640–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Sloviter, R., “Decreased hippocampal inhibition and selective loss of interneurons in experimental epilepsy,” Science, 235, 73–76 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Sloviter, R., Bumanglag, A., Schwarcz, R., and Frotscher, M., “Abnormal dentate gyrus network circuitry in temporal lobe epilepsy,” in: Jasper’s Basic Mechanisms of the Epilepsies, Noebels, J. L. et al. (eds.), National Center for Biotechnology Information (US), Bethesda (MD) (2012).

  • Song, I., Orosz, I., Chervoneva, I., et al., “Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy,” Epilepsia, 58, 1972–1984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, M. Y., Tian, F. F., Wang, Y. Z., et al., “Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model,” Mol. Med. Rep., 11, 1738–1744 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Spigelman, I., Yan, X., Obenaus, A., et al., “Dentate granule cells form novel basal dendrites in a rat model of temporal lobe epilepsy,” Neuroscience, 86, 109–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Staba, R. J., Wilson, C. L., Bragin, A., et al., “Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex,” J. Neurophysiol., 88, 1743–1752 (2002).

    Article  PubMed  Google Scholar 

  • Sun, C., Mtchedlishvili, Z., Bertram, E. H., et al., “Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy,” J. Comp. Neurol., 500, 876–893 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutula, T. P. and Dudek, F. E., “Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system,” Prog. Brain Res., 163, 541–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sutula, T., Cascino, G., Cavazos, J., et al., “Mossy fiber synaptic reorganization in the epileptic human temporal lobe,” Ann. Neurol., 26, 321–330 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Tamagnone, L. and Comoglio, P., “Signalling by semaphorin receptors: cell guidance and beyond,” Trends Cell Biol., 10, 377–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tauck D and Nadler, J., “Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats,” J. Neurosci., (1985) 5: 1016– 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thind, K. K., Ribak, C. E., and Buckmaster, P. S., “Synaptic input to dentate granule cell basal dendrites in a rat model of temporal lobe epilepsy,” J. Comp. Neurol., 509, 190–202 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong, X., Tong, X., Peng, Z., et al., “Ectopic expression of α6 and δ GABAA receptor subunits in hilar somatostatin neurons increases tonic inhibition and alters network activity in the dentate gyrus,” J. Neurosci., 35, 16142–16158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulving, E., “Episodic memory: from mind to brain,” Annu. Rev. Psychol., 53, 1–25 (2002).

    Article  PubMed  Google Scholar 

  • Ueda, Y., Doi, T., Tsuru, N., et al., “Expression of glutamate transporters and ionotropic glutamate receptors in GLAST knockout mice,” Brain Res. Mol. Brain Res., 104, No. 2, 120–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Van Paesschen, W., Revesz, T., Duncan, J. S., et al., “Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy,” Ann. Neurol., 42, 756–766 (1997).

    Article  PubMed  Google Scholar 

  • Viscomi, M. T., Oddi, S., Latini, L., et al., “The endocannabinoid system: A new entry in remote cell death mechanisms,” Exp. Neurol., 224, 56–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  • von Ellenrieder, N., Frauscher, B., Dubeau, F., and Gotman, J., “Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80–500Hz),” Epilepsia, 57, 869–878 (2016).

    Article  Google Scholar 

  • Walter, C., Murphy, B. L., Pun, R. Y., et al., “Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells,” J. Neurosci., 27, 7541–7552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, S. A., Song, I., Leng, M., et al., “Ripples have distinct spectral properties and phase-amplitude coupling with slow waves, but indistinct unit firing, in human epileptogenic hippocampus,” Front. Neurol., 11, 174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittner, L., Maglóczky, Z., Borhegyi, Z., et al., “Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus,” Neuroscience, 108, 587–600 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wuarin, J. P. and Dudek, F. E., “Excitatory synaptic input to granule cells increases with time after kainate treatment,” J. Neurophysiol., 85, No. 3, 1067–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki, R., Thind, K., and Buckmaster, P. S., “Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy,” J. Comp. Neurol., 523, 281–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Zeng, L. H., Rensing, N. R., and Wong, M., “The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy,” J. Neurosci., 29, 6964–6972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, R. Z., Timofeeva, O., and Nadler, J. V., “High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine- treated rats,” J. Neurophysiol., 104, 3293–3304 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Xiong, T., Tan, B., et al., “Pilocarpine-induced epilepsy is associated with actin cytoskeleton reorganization in the mossy fiber-CA3 synapses,” Epilepsy Res., 108, 379–389 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, J., “Changes in the Timm sulfide silver staining patter of the rat hippocampus and fascia dentata following early postnatal deafferentiation,” Brain Res., 64, 313–326 (1973).

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, J., “Long-term synaptic reorganization in rat fascia dentate deafferented at adolescent and adult stages: observations with the Timm method,” Brain Res., 76, 336–342 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Kitchigina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 3, pp. 343–359, May–June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitchigina, V.F., Shubina, L.V. & Popova, I.Y. The Role of the Dentate Gyrus in Mediating Hippocampal Functions: The Epileptic Brain. Neurosci Behav Physi 52, 1418–1428 (2022). https://doi.org/10.1007/s11055-023-01373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01373-0

Keywords

Navigation