Skip to main content
Log in

Cytoarchitecture of the mouse neocortex revealed by the low-molecular-weight neurofilament protein subunit

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The expression patterns of the medium- and high-molecular-weight subunits of the neurofilament protein triplet have been extensively studied in several neuroanatomical studies. In the present study, we report the use of the low-molecular-weight neurofilament protein subunit (NF-L) as a reliable marker within the neurofilament protein family to reveal the regional architecture of mammalian neocortex. We document clearly its usefulness in anatomical parcellation studies and report unique expression patterns of NF-L throughout the mouse neocortex. NF-L was most abundant in the somatosensory cortex, the lateral secondary visual area, the granular insular cortex, and the motor cortex. Low NF-L staining intensity was observed in the agranular insular cortex, the prelimbic and infralimbic cortex, the anterior cingulate cortex, the visual rostromedial areas, the temporal association cortex, the ectorhinal cortex, and the lateral entorhinal cortex. NF-L immunoreactivity was present in the perikarya, dendrites, and proximal segment of axons primarily of pyramidal neurons, and was mainly located in layers II and III, and to a lesser extent in layers V and VI. Interestingly, Black-Gold myelin staining confirmed a close correlation between NF-L immunoreactivity and myelination patterns. The characteristic and distinctive distribution and laminar expression profiles of NF-L make it an excellent tool to assess accurately topographical boundaries among neocortical areas as illustrated herein in the adult mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ACd:

Dorsal anterior cingulate cortex

ACv:

Ventral anterior cingulate cortex

AC/RS:

Anterior cingulate/retrosplenial cortex

ac:

Anterior commissure

AI:

Agranular insular cortex

AId:

Dorsal agranular insular cortex

AIv:

Ventral agranular insular cortex

AIp:

Posterior agranular insular cortex

Au1:

Primary auditory cortex

Aud:

Dorsal auditory cortex

Auv:

Ventral auditory cortex

DI:

Dysgranular insular cortex

DLO:

Dorsolateral orbital cortex

Ect:

Ectorhinal cortex

ec:

External capsule

GI:

Granular insular cortex

IL:

Infralimbic cortex

LEnt:

Lateral entorhinal cortex

LO:

Lateral orbital cortex

lo:

Lateral olfactory tract

M1:

Primary motor cortex

M2:

Secondary motor cortex

MEnt:

Medial entorhinal cortex

MO:

Medial orbital cortex

NF-L:

Neurofilament protein low molecular weight subunnit

Pir:

Piriform cortex

Prh:

Perirhinal cortex

PL:

Prelimbic cortex

RM1:

Rostromedial visual area 1

RM2:

Rostromedial visual area 2

RM3–4:

Rostromedial visual area 3–4

RSA:

Agranular retrosplenial cortex

RSG:

Granular retrosplenial cortex

S1:

Primary somatosensory cortex

S1BF:

Barrel field in S1

S2:

Secondary somatosensory cortex

TeA:

Temporal association area

V1:

Primary visual cortex

V2L:

Lateral secondary visual cortex

V2M:

Medial secondary visual cortex

VO:

Ventral orbital cortex

References

  • Angelides KJ, Smith KE, Takeda M (1989) Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 108:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Baldauf ZB (2005) SMI-32 parcellates the visual cortical areas of the marmoset. Neurosci Lett 383:109–114

    Article  PubMed  CAS  Google Scholar 

  • Boire D, Desgent S, Matteau I, Ptito M (2005) Regional analysis of neurofilament protein immunoreactivity in the hamsters cortex. J Chem Neuroanat 29:193–208

    Article  PubMed  CAS  Google Scholar 

  • Bongarzone ER, Foster L, Byravan S, Casaccia-Bonnefil P, Schonmann V, Campagnoni AT (1998) Two neuronal cell lines expressing the myelin basic protein gene display differences in their in vitro survival and in their response to glia. J Neurosci Res 54:309–319

    Article  PubMed  CAS  Google Scholar 

  • Bourne JA, Rosa MG (2003) Neurofilament protein expression in the geniculostriate pathway of a New World monkey (Callithrix jacchus). Exp Brain Res 150:19–24

    PubMed  CAS  Google Scholar 

  • Bourne JA, Rosa MG (2006) Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb Cortex 16:405–414

    Article  PubMed  Google Scholar 

  • Bourne JA, Warner CE, Rosa MG (2005) Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry. Cereb Cortex 15:740–748

    Article  PubMed  Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205

    Article  PubMed  CAS  Google Scholar 

  • Campbell MJ, Hof PR, Morrison JH (1991) A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein. Brain Res 539:133–136

    Article  PubMed  CAS  Google Scholar 

  • Carden MJ, Schlaepfer WW, Lee VM (1985) The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 260:9805–9817

    PubMed  CAS  Google Scholar 

  • Chaudhuri A, Zangenehpour S, Matsubara JA, Cynader MS (1996) Differential expression of neurofilament protein in the visual system of the vervet monkey. Brain Res 709:17–26

    Article  PubMed  CAS  Google Scholar 

  • Ching GY, Liem RK (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol 122:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Cipolloni PB, Pandya DN (1991) Golgi, histochemical, and immunocytochemical analyses of the neurons of auditory-related cortices of the rhesus monkey. Exp Neurol 114:104–122

    Article  PubMed  CAS  Google Scholar 

  • Cohlberg JA, Hajarian H, Tran T, Alipourjeddi P, Noveen A (1995) Neurofilament protein heterotetramers as assembly intermediates. J Biol Chem 270:9334–9339

    Article  PubMed  CAS  Google Scholar 

  • Cole JS, Messing A, Trojanowski JQ, Lee VM (1994) Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice. J Neurosci 14:6956–6966

    PubMed  CAS  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    PubMed  CAS  Google Scholar 

  • Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    Article  PubMed  CAS  Google Scholar 

  • Dahl D (1983) Immunohistochemical differences between neurofilaments in perikarya, dendrites and axons. Immunofluorescence study with antisera raised to neurofilament polypeptides (200K, 150K, 70K) isolated by anion exchange chromatography. Exp Cell Res 149:397–408

    Article  PubMed  CAS  Google Scholar 

  • de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463

    Article  PubMed  Google Scholar 

  • del Rio JA, de Lecea L, Ferrer I, Soriano E (1994) The development of parvalbumin-immunoreactivity in the neocortex of the mouse. Dev Brain Res 81:247–259

    Article  CAS  Google Scholar 

  • DeYoe EA, Hockfield S, Garren H, Van Essen D (1990) Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5:67–81

    Article  PubMed  CAS  Google Scholar 

  • Dräger UC (1975) Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol 160:269–290

    Article  PubMed  Google Scholar 

  • Duffy KR, Livingstone MS (2003) Distribution of non-phosphorylated neurofilament in squirrel monkey V1 is complementary to the pattern of cytochrome-oxidase blobs. Cereb Cortex 13:722–727

    Article  PubMed  Google Scholar 

  • Duffy KR, Murphy KM, Frosch MP, Livingstone MS (2007) Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex. Cereb Cortex 17:1283–1291

    Article  PubMed  Google Scholar 

  • Evans J, Sumners C, Moore J, Huentelman MJ, Deng J, Gelband CH, Shaw G (2002) Characterization of mitotic neurons derived from adult rat hypothalamus and brain stem. J Neurophysiol 87:1076–1085

    PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    Article  PubMed  CAS  Google Scholar 

  • Geisler N, Kaufmann E, Fischer S, Plessmann U, Weber K (1983) Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J 2:1295–1302

    PubMed  CAS  Google Scholar 

  • Gitton Y, Cohen-Tannoudji M, Wassef M (1999) Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. Cereb Cortex 9:611–620

    Article  PubMed  CAS  Google Scholar 

  • Gotow T (2000) Neurofilaments in health and disease. Med Electron Microsc 33:173–199

    Article  PubMed  CAS  Google Scholar 

  • Gray D, Gutierrez C, Cusick CG (1999) Neurochemical organization of inferior pulvinar complex in squirrel monkeys and macaques revealed by acetylcholinesterase histochemistry, calbindin and Cat-301 immunostaining, and Wisteria floribunda agglutinin binding. J Comp Neurol 409:452–468

    Article  PubMed  CAS  Google Scholar 

  • Hayes TL, Lewis DA (1992) Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex. Cereb Cortex 2:56–67

    Article  PubMed  CAS  Google Scholar 

  • Hendry SH, Jones EG, Hockfield S, McKay RD (1988) Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus. J Neurosci 8:518–542

    PubMed  CAS  Google Scholar 

  • Hisanaga S, Ikai A, Hirokawa N (1990) Molecular architecture of the neurofilament. I. Subunit arrangement of neurofilament L protein in the intermediate-sized filament. J Mol Biol 211:857–869

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Nimchinsky EA, Morrison JH (1995) Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J Comp Neurol 362:109–133

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Bogaert YE, Rosenthal RE, Fiskum G (1996a) Distribution of neuronal populations containing neurofilament protein and calcium-binding proteins in the canine neocortex: regional analysis and cell typology. J Chem Neuroanat 11:81–98

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Rosenthal RE, Fiskum G (1996b) Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus. J Chem Neuroanat 11:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH (1996c) Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376:112–127

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Ungerleider LG, Adams MM, Webster MJ, Gattass R, Blumberg DM, Morrison JH (1997) Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein. Vis Neurosci 14:981–987

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Young WG, Bloom FE, Belichenko PV, Celio MR (2000) Comparative cytoarchitectonic atlas of the C57BL6 and 129Sv mouse brains. Elsevier, New York

    Google Scholar 

  • Hoffman PN, Lasek RJ (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 84:3472–3476

    Article  PubMed  CAS  Google Scholar 

  • Julien JP, Mushynski WE (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem 258:4019–4025

    PubMed  CAS  Google Scholar 

  • Julien JP, Ramachandran K, Grosveld F (1985) Cloning of a cDNA encoding the smallest neurofilament protein from the rat. Biochim Biophys Acta 825:398–404

    PubMed  CAS  Google Scholar 

  • Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38:529–545

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Caria MA, Asanuma H (1994) Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol 345:172–184

    Article  PubMed  CAS  Google Scholar 

  • Kirkcaldie MT, Dickson TC, King CE, Grasby D, Riederer BM, Vickers JC (2002) Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J Chem Neuroanat 24:163–171

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Amaral DG (2000) Macaque monkey retrosplenial cortex: I. three-dimensional and cytoarchitectonic organization. J Comp Neurol 426:339–365

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Hashikawa T, Tanaka K, Jones EG (1994) Neurochemical gradient along the monkey occipito-temporal cortical pathway. Neuroreport 5(5):613–616

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Tanaka K, Hashikawa T, Jones EG (1999) Neurochemical gradients along monkey sensory cortical pathways: calbindin-immunoreactive pyramidal neurons in layers II and III. Eur J Neurosci 11(12):4197–4203

    Article  PubMed  CAS  Google Scholar 

  • Kure R, Brown IR (1995) Expression of low-molecular-weight neurofilament (NF-L) mRNA during postnatal development of the mouse brain. Neurochem Res 20:833–846

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Cleveland DW (1994) Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease. Curr Opin Cell Biol 6:34–40

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122:1337–1350

    Article  PubMed  CAS  Google Scholar 

  • Lewis SA, Cowan NJ (1985) Genetics, evolution, and expression of the 68,000-mol-wt neurofilament protein: isolation of a cloned cDNA probe. J Cell Biol 100:843–850

    Article  PubMed  CAS  Google Scholar 

  • Liem RK (1990) Neuronal intermediate filaments. Curr Opin Cell Biol 2:86–90

    Article  PubMed  CAS  Google Scholar 

  • Liem RK, Yen SH, Salomon GD, Shelanski ML (1978) Intermediate filaments in nervous tissues. J Cell Biol 79:637–645

    Article  PubMed  CAS  Google Scholar 

  • Martínez-García F, Gonzalez-Hernandez T, Martinez-Millan L (1994) Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat. J Comp Neurol 350:439–451

    Article  PubMed  Google Scholar 

  • Mathieu JF, Ma D, Descarries L, Vallee A, Parent A, Julien JP, Doucet G (1995) CNS distribution and overexpression of neurofilament light proteins (NF-L) in mice transgenic for the human NF-L: aberrant accumulation in thalamic perikarya. Exp Neurol 132:134–146

    Article  PubMed  CAS  Google Scholar 

  • Matus A (1987) Putting together the neuronal cytoskeleton. Trends Neurosci 10:186–188

    Article  Google Scholar 

  • McGuire PK, Hockfield S, Goldman-Rakic PS (1989) Distribution of cat-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey. J Comp Neurol 288:280–296

    Article  PubMed  CAS  Google Scholar 

  • Mellot JG, Van der Gucht E, Lee CC, Carrasco A, Winer JA, Lomber SG (2010) Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hear Res 267:119–136

    Google Scholar 

  • Melvin NR, Dyck RH (2003) Developmental distribution of calretinin in mouse barrel cortex. Dev Brain Res 143:111–114

    Article  CAS  Google Scholar 

  • Morrison JH, Grzanna R, Molliver ME, Coyle JT (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: an immunofluorescence study. J Comp Neurol 181:17–39

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Chen J, Zhang Z, Kanai Y, Hirokawa N (1995) Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments. J Cell Biol 129:411–429

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Hof PR, Young WG, Morrison JH (1996) Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey. J Comp Neurol 374:136–160

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1997) Neurofilament and calcium-binding proteins in the human cingulate cortex. J Comp Neurol 384:597–620

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Sihag RK (1991) Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci 14:501–506

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Ohgushi M, Hasegawa K, Murayama N (1991) Differential development of cortical taste areas in granular and dysgranular insular cortices in rats. Dev Brain Res 60:271–274

    Article  CAS  Google Scholar 

  • Ogawa H, Hasegawa K, Murayama N (1992) Difference in taste quality coding between two cortical taste areas, granular and dysgranular insular areas, in rats. Exp Brain Res 91:415–424

    PubMed  CAS  Google Scholar 

  • Olavarria J, Montero VM (1989) Organization of visual cortex in the mouse revealed by correlating callosal and striate-extrastriate connections. Vis Neurosci 3:59–69

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Hong SK, Kong JH, Jeon CJ (1999) Localization of calcium-binding protein parvalbumin-immunoreactive neurons in mouse and hamster visual cortex. Mol Cells 9:542–547

    PubMed  CAS  Google Scholar 

  • Park HJ, Kong JH, Kang YS, Park WM, Jeong SA, Park SM, Lim JK, Jeon CJ (2002) The distribution and morphology of calbindin D28K-and calretinin-immunoreactive neurons in the visual cortex of mouse. Mol Cell 14:143–149

    CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotactic coordinates, 2nd edn. Elsevier Science, New York

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS (1999) Chemoarchitectonic atlas of the rat forebrain. Academic Press, San Diego

    Google Scholar 

  • Peters A, Kara DA (1985) The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells. J Comp Neurol 234:218–241

    Article  PubMed  CAS  Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691

    Article  PubMed  Google Scholar 

  • Preuss TM, Stepniewska I, Jain N, Kaas JH (1997) Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32. Brain Res 767:148–153

    Article  PubMed  CAS  Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96:11601–11606

    Article  PubMed  CAS  Google Scholar 

  • Reeben M, Neuman T, Palgi J, Palm K, Paalme V, Saarma M (1995) Characterization of the rat light neurofilament (NF-L) gene promoter and identification of NGF and cAMP responsive regions. J Neurosci Res 40:177–188

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68

    Article  PubMed  CAS  Google Scholar 

  • Schmued L, Slikker W (1999) Black-gold: a simple, high-resolution histochemical label for normal and pathological myelin in brain tissue sections. Brain Res 837:289–297

    Article  PubMed  CAS  Google Scholar 

  • Schuett S, Bonhoeffer T, Hubener M (2002) Mapping retinotopic structure in mouse visual cortex with optical imaging. J Neurosci 22:6549–6559

    PubMed  CAS  Google Scholar 

  • Schwartz ML, Hua Y, Canete-Soler R, Schlaepfer WW (1998) Characterization of the mouse neurofilament light (NF-L) gene promoter by in vitro transcription. Mol Brain Res 57:21–30

    Article  PubMed  CAS  Google Scholar 

  • Sewards TV, Sewards MA (2001) Cortical association areas in the gustatory system. Neurosci Biobehav Rev 25:395–407

    Article  PubMed  CAS  Google Scholar 

  • Shaw G, Debus E, Weber K (1984) The immunological relatedness of neurofilament proteins of higher vertebrates. Eur J Cell Biol 34:130–136

    PubMed  CAS  Google Scholar 

  • Shaw G, Osborn M, Weber K (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments. Eur J Cell Biol 42:1–9

    PubMed  CAS  Google Scholar 

  • Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representations in Old World monkeys, great apes and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav Evol 63(2):82–106

    Article  PubMed  Google Scholar 

  • Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    Article  PubMed  CAS  Google Scholar 

  • Sihag RK, Nixon RA (1991) Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem 266:18861–18867

    PubMed  CAS  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    Article  PubMed  CAS  Google Scholar 

  • Tochitani S, Liang F, Watakabe A, Hashikawa T, Yamamori T (2001) The occ1 gene is preferentially expressed in the primary visual cortex in an activity-dependent manner: a pattern of gene expression related to the cytoarchitectonic area in adult macaque neocortex. Eur J Neurosci 13:297–307

    Article  PubMed  CAS  Google Scholar 

  • Van De Werd HJJM, Rajkowska G, Evers P, Uylings HBM (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353

    Article  CAS  Google Scholar 

  • Van der Gucht E, Vandesande F, Arckens L (2001) Neurofilament protein: a selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J Comp Neurol 441:345–368

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Jacobs S, Kaneko T, Vandesande F, Arckens L (2003) Distribution and morphological characterization of phosphate-activated glutaminase-immunoreactive neurons in cat visual cortex. Brain Res 988:29–42

    Article  PubMed  CAS  Google Scholar 

  • Van der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec 288:753–775

    Article  Google Scholar 

  • Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819

    Article  PubMed  Google Scholar 

  • Wagor E, Mangini NJ, Pearlman AL (1980) Retinotopic organization of striate and extrastriate visual cortex in the mouse. J Comp Neurol 193:187–202

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502:339–357

    Article  PubMed  Google Scholar 

  • Wang Q, Gao E, Burkhalter A (2007) In vivo transcranial imaging of connections in mouse visual cortex. J Neurosci Methods 159:268–276

    Article  PubMed  Google Scholar 

  • Wang Q, Gao E, Burkhalter A (2011) Gateways of ventral and dorsal streams in mouse visual cortex. J Neurosci 31(5):1905–1918

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Xia XM, Tang J, Ao H, Ko S, Liauw J, Qiu CS, Zhuo M (2003) Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J Neurosci 23:8402–8409

    PubMed  CAS  Google Scholar 

  • Wong P, Kaas JH (2008) Architectonic subdivisions of neocortex in the gray squirrel (Sciurus carolinensis). Anat Rec 291:1301–1333

    Article  Google Scholar 

  • Wong P, Kaas JH (2009) Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri). Anat Rec 292:994–1027

    Article  Google Scholar 

  • Xu Z, Dong DL, Cleveland DW (1994) Neuronal intermediate filaments: new progress on an old subject. Curr Opin Neurobiol 4:655–661

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Burt AD (2007) The diffuse stellate cell system. J Mol Histol 38:53–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Inge Van der Auwera, Lieve Geenen and Ria Vanlaer for excellent technical assistance. This study was supported by the Fund for Scientific Research—Flanders, Belgium (FWO-Flanders and the Research Fund of the Katholieke Universiteit Leuven, Belgium, grant OT 09/22 (to L.A.), and by the James S. McDonnell Foundation, grant 22002078 (to P.R.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutgarde Arckens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulussen, M., Jacobs, S., Van der Gucht, E. et al. Cytoarchitecture of the mouse neocortex revealed by the low-molecular-weight neurofilament protein subunit. Brain Struct Funct 216, 183–199 (2011). https://doi.org/10.1007/s00429-011-0311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0311-3

Keywords

Navigation