Skip to main content
Log in

Expression of low-molecular-weight neurofilament (NF-L) mRNA during postnatal development of the mouse brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A regional Northern blot analysis demonstrated that the highest levels of NF-L mRNA in the adult mouse brain are present in brain stem followed by mid-brain, with lower levels found in neocortex, cerebellum, and hippocampus. The study was extended to the cellular level over the time course of postnatal development using in situ hybridization. This developmental analysis revealed that the expression of NF-L mRNA closely follows the differentiation pattern of many large neurons during postnatal neurogenesis. Neurons which differentiate early such as Purkinje, mitral, pyramidal, and large neurons of brain stem and thalamic nuclei, expressed high levels of NF-L mRNA at postnatal day 1. Early expression of NF-L mRNA may be required for the maintenance of the extensive neurofilament protein networks that are detected within the axons of larger neurons. Smaller neurons which differentiate later, such as dentate gyrus granule cells, small pyramidal and granule cells of the neocortex, and granule cells of the cerebellum, exhibit a delayed expression of NF-L mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman, P. N., and Lasek, R. J. 1975. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell. Biol. 66:351–366.

    PubMed  Google Scholar 

  2. Steinert, P. M., and Roop, D. R. 1988. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57:593–625.

    PubMed  Google Scholar 

  3. Hoffman, P. N., Cleveland, D. W., Griffin, J. W., Landes, P. W., Cowan, N. J., and Price, D. L. 1987. Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA 84:3472–3476.

    PubMed  Google Scholar 

  4. Muma, N. A., and Hoffman, P. N. 1993. Neurofilaments are intrinsic determinants of axonal caliber. Micron. 24:677–683.

    Google Scholar 

  5. Geisler, N., and Weber, K. 1981. Self-assembly in vitro of the 68.000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments. J. Mol. Biol. 151:565–571.

    PubMed  Google Scholar 

  6. Hisanaga, S., Ikai, A., and Hirokawa, N. 1990. Molecular architecture of the neurofilament I. Subunit arrangement of neurofilament L protein in the intermediate sized filament. J. Mol. Biol. 211:857–869.

    PubMed  Google Scholar 

  7. Carpenter, S. 1968. Proximal axonal enlargement in motor neuron disease. Neurology 18:841–851.

    PubMed  Google Scholar 

  8. Hirano, A. 1991. Cytopathology of amyotrophic lateral sclerosis. Adv. Neurol. 56:91–102.

    PubMed  Google Scholar 

  9. Côté, F., Collard, J. F., and Julien, J. P. 1994. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 72:35–46.

    Google Scholar 

  10. Lee, M. K., Marszalek, J. R., and Cleveland, D. W. 1994. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13:975–988.

    PubMed  Google Scholar 

  11. Xu, Z., Cork, L. C., Griffin, J. W., and Cleveland, D. W. 1993. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73:23–33.

    PubMed  Google Scholar 

  12. Cochard, P., and Paulin, D. 1984. Initial expression of Neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J. Neurosci. 4:2080–2094.

    PubMed  Google Scholar 

  13. Carden, M. J., Trojanowski, J. Q., Schlaepfer, W. W., and Lee, V. M.-Y. 1987. Two stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J. Neurosci. 7:3489–3504.

    PubMed  Google Scholar 

  14. Escurat, M., Djabali, K., Gumpel, M., Gros, F., and Portier, M. M. 1990. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat. J. Neurosci. 10:764–784.

    PubMed  Google Scholar 

  15. Sechrist, J., and Bronner-Fraser, M. 1990. Birth and differentitation of reticular neurons in the chick hindbrain: ontogeny of the first neuronal population. Neuron 7:947–963.

    Google Scholar 

  16. Kitamura, T., and Watanabe, S. 1990. Intermediate filament expression in normal and retrograde degeneration of rat brains as visualized by in situ hybridization. Acta. Histochem. Cytochem. 23:375–386.

    Google Scholar 

  17. Liesi, P., Julien, J. P., Vilja, P., Grosveld, F., and Rechardt, L. 1986. Specific detection of neuronal cell bodies: in situ hybridization with a biotin-labelled neurofilament cDNA probe. J. Histochem. Cytochem. 34:923–926.

    PubMed  Google Scholar 

  18. Julien, J. P., Meyer, D., Flavell, D., Hurst, J., and Grosveld, F. 1986. Cloning and developmental expression of the murine intermediate filament gene family. Mol. Brain Res. 1:243–250.

    Google Scholar 

  19. Schlaepfer, W. W., and Bruce, J. 1990. Simultaneous up-regulation of neurofilament proteins during the postnatal development of the rat nervous system. J. Neurosci. Res. 25:39–49.

    PubMed  Google Scholar 

  20. Kost, S. A., Chacko, K., and Oblinger, M. M. 1992. Developmental patterns of intermediate filament gene expression in the normal hamster brain. Brain Res. 95:270–280.

    Google Scholar 

  21. Dautigny, A., Pham-Dinh, D., Roussel, C., Felix, J. M., Nussbaum, J. L., and Jollès, P. 1988. The large neurofilament subunit (NF-H) of the rat: cDNA cloning and in situ detection. Biochem. Biophys. Res. Commun. 154:1099–1106.

    PubMed  Google Scholar 

  22. Roussel, G., Felix, J. M., Dautigny, A., Pham-Dinh, D., Hindelang, C., Jollès, P., and Nussbaum, J. L. 1991. In situ localization of NF-H neurofilament subunit mRNAs in rat brain. Dev. Neurosci. 13:98–103.

    PubMed  Google Scholar 

  23. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 18:5294–5299.

    PubMed  Google Scholar 

  24. Lewis, S. A., and Cowan, N. J. 1986. Anomalous placement of introns in a member of the intermediate filament multigene family: an evolutionary conundrum. Mol. Cell. Biol. 6:1529–1534.

    PubMed  Google Scholar 

  25. Nakahira, K., Ikenaka, K., Wada, K., Tamura, T., Furuichi, T., and Mikoshiba, K. 1990. Structure of the 68 kDa neurofilament gene and regulation of its expression. J. Biol. Chem. 265:19786–19791.

    PubMed  Google Scholar 

  26. Altman, J. 1966. Autoradiographic and histological studies of postnatal neurogenesis II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126:431–474.

    Google Scholar 

  27. Altman, J., and Das, G. D. 1966. Autoradiographic and histological studies of postnatal neurogenesis I. A. longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126: 337–390.

    PubMed  Google Scholar 

  28. Raju, T., Zimmerman, A., and Dahl, K. 1981. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev. Biol. 85:344–357.

    PubMed  Google Scholar 

  29. Isaacson, R. L., and Pribram, K. H., (eds.), The Hippocampus, Plenum Press, New York, 1975.

    Google Scholar 

  30. Jacobson, M., Developmental Neurobiology. Pages 401–451, Plenum Press, New York, 1991.

    Google Scholar 

  31. Zimmer, J. 1978. Development of the hippocampus and fascia dentata: morphological and histochemical aspects. Progress Brain Res. 48:171–190.

    Google Scholar 

  32. Altman, J. 1969. Autoradiographic and histological studies of postnatal neurogenesis III. Dating the time of production and onset and differentiation of cerebellar microneurons in rats. J. Comp. Neurol. 136:269–294.

    PubMed  Google Scholar 

  33. Altman, J. 1982. Morphological development of the rat cerebellum and some of its mechanisms. Experimental Brain Res. Suppl. 6:8–49.

    Google Scholar 

  34. Haberly, L. B., and Price, J. L. 1977. The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res. 129:152–157.

    PubMed  Google Scholar 

  35. Pomeroy, S. L., LaMantia, A. S., and Purves, D. 1990. Postnatal construction of neural circuitry in the mouse olfactory bulb. J. Neurosci. 10:1952–1966.

    PubMed  Google Scholar 

  36. Shepherd, G. M. 1972. Synaptic Organization of the Mammalian Olfactory Bulb. Physiol. Rev. 52:864–917.

    PubMed  Google Scholar 

  37. Carpenter, M. B. 1971. Core text of neuroanatomy, Williams and Wilkins, Baltimore, 1991.

    Google Scholar 

  38. Norris, F. H. 1992. Amyotrophic lateral sclerosis: the clinical disorder.in Smith, R. A. (ed.), Handbook of amyotrophic lateral sclerosis, Marcel Dekker Inc., New York, 1992.

    Google Scholar 

  39. Brady, S. T. 1993. Motor Neurons and Neurofilaments in sickness and in health. Cell 73:1–3.

    PubMed  Google Scholar 

  40. Ohara, O., Gahara, Y., Miyake, T., Teraoka, H., and Kitamura, T. 1993. Neurofilament deficiency in Quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol. 121:387–395.

    PubMed  Google Scholar 

  41. Sakaguchi, T., Okada, M., Kitamura, T., and Kawasaki, K. 1993. Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci. Lett. 153:65–68.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom to address reprint requests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kure, R., Brown, I.R. Expression of low-molecular-weight neurofilament (NF-L) mRNA during postnatal development of the mouse brain. Neurochem Res 20, 833–846 (1995). https://doi.org/10.1007/BF00969696

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969696

Key Words

Navigation