Skip to main content
Log in

Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 Tesla

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Several fibre tracts can be accurately located using conventional Magnetic Resonance Images (MRI) of the human brain, including the corticospinal tract (CST), which appears as a T 1-weighted hypointense/T 2-weighted hyperintense patch in the posterior part of the posterior-limb of the internal capsule (PLIC). Here we use high-field MRI (7T) to assess the quantitative MRI properties of the CST at the PLIC level in 22 healthy young male participants. We used three different imaging modalities: the T 1 and T 2 relaxation times (T 1 and T 2) and the Magnetization Transfer Ratio (MTR). These measurements obtained in the CST were compared with those in the anterior two-thirds of the PLIC. We observed longer T 1 and T 2 and lower MTR in the CST region compared with the adjacent (control) PLIC region. This effect is consistent with the presence of sparsely distributed, large-diameter fibres described in previous histological studies and, as such, might reflect lower myelin density and/or different morphology of fibres in the CST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi M, Yamaguchi K, Hosoya T (1996) III-defined focal low attenuation in the posterior internal capsule: a normal CT finding. Neuroradiology 38(2):124–127

    PubMed  CAS  Google Scholar 

  • Bergers E, Bot J, De Groot C, Polman C, Lycklama a Nijeholt G, Castelijns J, van der Valk P, Barkhof F (2002) Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology 59(11):1766–1771

    PubMed  CAS  Google Scholar 

  • Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128(10):2224–2239

    Article  PubMed  Google Scholar 

  • Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS ONE 4(11):e7754

    Article  PubMed  Google Scholar 

  • Cox EF, Gowland PA (2010) Simultaneous quantification of T2 and T’2 using a combined gradient echo-spin echo sequence at ultrahigh field. Magn Reson Med 64(5):1440–1445

    Article  PubMed  Google Scholar 

  • Crovitz HF, Zener K (1962) A group-test for assessing hand- and eye-dominance. Am J Psychol 75:271–276

    Article  PubMed  CAS  Google Scholar 

  • Curnes JT, Burger PC, Djang WT, Boyko OB (1988) MR imaging of compact white matter pathways. Am J Neuroradiol 9 (6):1061–1068

    Google Scholar 

  • DeBoy CA, Zhang J, Dike S, Shats I, Jones M, Reich DS, Mori S, Nguyen T, Rothstein B, Miller RH, Griffin JT, Kerr DA, Calabresi PA (2007) High resolution diffusion tensor imaging of axonal damage in focal inflammatory and demyelinating lesions in rat spinal cord. Brain 130(8):2199–2210

    Article  PubMed  Google Scholar 

  • Fisher E, Chang A, Fox RJ, Tkach JA, Svarovsky T, Nakamura K, Rudick RA, Trapp BD (2007) Imaging correlates of axonal swelling in chronic multiple sclerosis brains. Ann Neurol 62(3):219–228

    Article  PubMed  Google Scholar 

  • Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46(1):6–12

    Article  PubMed  CAS  Google Scholar 

  • Hervé P-Y, Leonard G, Perron M, Pike B, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Handedness, motor skills and maturation of the corticospinal tract in the adolescent brain. Hum Brain Mapp 30(10):3151–3162

    Article  PubMed  Google Scholar 

  • Johansen-Berg H (2010) Behavioural relevance of variation in white matter microstructure. Curr Opin Neurol 23(4):351–358

    PubMed  Google Scholar 

  • Kanaan RA, Shergill SS, Barker GJ, Catani M, Ng VW, Howard R, McGuire PK, Jones DK (2006) Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res Neuroimaging 146(1):73–82

    Article  Google Scholar 

  • Koenigkam-Santos M, de Castro M, Versiani BR, Diniz PRB, Santos AC (2010) Kallmann syndrome and mirror movements: White matter quantitative evaluation with magnetic resonance imaging. J Neurol Sci 292(1–2):40–44

    Article  PubMed  Google Scholar 

  • Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RS, Bouloux PM, Passingham RE (1999) Kallmann’s syndrome: mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 52(4):816–822

    PubMed  CAS  Google Scholar 

  • Kubicki M, Park H, Westin C, Nestor P, Mulkern R, Maier S, Niznikiewicz M, Connor E, Levitt J, Frumin M, Kikinis R, Jolesz F, McCarley R, Shenton M (2005) DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. NeuroImage 26(4):1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  PubMed  CAS  Google Scholar 

  • MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B (2006) Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 24(4):515–525

    Article  PubMed  Google Scholar 

  • Mirowitz S, Sartor K, Gado M, Torack R (1989) Focal signal-intensity variations in the posterior internal capsule: normal MR findings and distinction from pathologic findings. Radiology 172(2):535–539

    PubMed  CAS  Google Scholar 

  • Mottershead J, Schmierer K, Clemence M, Thornton J, Scaravilli F, Barker G, Tofts P, Newcombe J, Cuzner M, Ordidge R, McDonald W, Miller D (2003) High field MRI correlates of myelin content and axonal density in multiple sclerosis. J Neurol 250(11):1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Mougin OE, Gowland PA (2008) Combining morphometry and T1 relaxometry in a single imaging protocol: measuring T1 with MPRAGE. Proc Intl Soc Magn Reson Med 16:3083

    Google Scholar 

  • Mougin OE, Coxon RC, Pitiot A, Gowland PA (2010) Magnetization transfer phenomenon in the human brain at 7 T. NeuroImage 49(1):272–281

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Toro R (2009) Could sex differences in white matter be explained by g ratio? Frontiers Neuroanat 3:14

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1996) Numerical recipes in C: the art of scientific computing, 2 edn. Cambridge University Press, Cambridge

  • Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, Mori S (2006) Quantitative characterization of the corticospinal tract at 3 Tesla. Am J Neuroradiol 27(10):2168–2178

    PubMed  CAS  Google Scholar 

  • Reich DS, Smith SA, Zackowski KM, Gordon-Lipkin EM, Jones CK, Farrell JA, Mori S, van Zijl PC, Calabresi PA (2007) Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis. NeuroImage 38(2):271–279

    Article  PubMed  Google Scholar 

  • Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721

    Article  PubMed  CAS  Google Scholar 

  • Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415

    Article  PubMed  Google Scholar 

  • Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH (2007) Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 26(1):41–51

    Article  PubMed  Google Scholar 

  • Tanabe JL, Vermathen M, Miller R, Gelinas D, Weiner MW, Rooney WD (1998) Reduced MTR in the corticospinal tract and normal T2 in amyotrophic lateral sclerosis. Magn Reson Imaging 16(10):1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Vavasour IM, Li DKB, Laule C, Traboulsee AL, Moore GRW, MacKay AL (2007) Multi-parametric MR assessment of T1 black holes in multiple sclerosis. J Neurol 254(12):1653–1659

    Article  PubMed  CAS  Google Scholar 

  • Westerhausen R, Huster RJ, Kreuder F, Wittling W, Schweiger E (2007) Corticospinal tract asymmetries at the level of the internal capsule: is there an association with handedness? NeuroImage 37(2):379–386

    Article  PubMed  Google Scholar 

  • Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T 1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magn Reson Mater Phys Biol Med 21(1–2):121–130

    CAS  Google Scholar 

  • Yagishita A, Nakano I, Oda M, Hirano A (1994) Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 191(2):455–460

    PubMed  CAS  Google Scholar 

  • Yu O, Steibel J, Mauss Y, Guignard B, Eclancher B, Chambron J, Grucker D (2004) Remyelination assessment by MRI texture analysis in a cuprizone mouse model. Magn Reson Imaging 22(8):1139–1144

    Article  PubMed  Google Scholar 

  • Zaaraoui W, Deloire M, Merle M, Girard C, Raffard G, Biran M, Inglese M, Petry KG, Gonen O, Brochet B, Franconi J, Dousset V (2008) Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 9.4T. Magma 21(5):357–362

    Google Scholar 

Download references

Acknowledgments

PYH was supported by a grant from the Fondation Recherche Medicale.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre-Yves Hervé or Tomas Paus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hervé, PY., Cox, E.F., Lotfipour, A.K. et al. Structural properties of the corticospinal tract in the human brain: a magnetic resonance imaging study at 7 Tesla. Brain Struct Funct 216, 255–262 (2011). https://doi.org/10.1007/s00429-011-0306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0306-0

Keywords

Navigation