Skip to main content

Advertisement

Log in

The effect of diffusion gradient direction number on corticospinal tractography in the human brain: an along-tract analysis

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

We evaluated diffusion imaging measures of the corticospinal tract obtained with a probabilistic tractography algorithm applied to data of two acquisition protocols based on different numbers of diffusion gradient directions (NDGDs).

Materials and methods

The corticospinal tracts (CST) of 18 healthy subjects were delineated using 22 and 66-NDGD data. An along-tract analysis of diffusion metrics was performed to detect possible local differences due to NDGD.

Results

FA values at 22-NDGD showed an increase along the central portion of the CST. The mean of partial volume fraction of the orientation of the second fiber (f2) was higher at 66-NDGD bilaterally, because for 66-NDGD data the algorithm more readily detects dominant fiber directions beyond the first, thus the increase in FA at 22-NDGD is due to a substantially reduced detection of crossing fiber volume. However, the good spatial correlation between the tracts drawn at 22 and 66 NDGD shows that the extent of the tract can be successfully defined even at lower NDGD.

Conclusions

Given the spatial tract localization obtained even at 22-NDGD, local analysis of CST can be performed using a NDGD compatible with clinical protocols. The probabilistic approach was particularly powerful in evaluating crossing fibers when present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  2. Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, Johansen-Berg H, Miller DH, Matthews PM, Thompson AJ (2006) Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain 129:1859–1871

    Article  CAS  PubMed  Google Scholar 

  3. Bastin ME, Pettit LD, Bak TH, Gillingwater TH, Smith C, Abrahams S (2013) Quantitative tractography and tract shape modeling in amyotrophic lateral sclerosis. J Magn Reson Imaging 38(5):1140–1145

    Article  PubMed  Google Scholar 

  4. Mori S, Crain B, Chacko VP, van Zijl PCM (1999) Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  5. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  6. Wahl M, Li YO, Ng J, Lahue SC, Cooper SR, Sherr EH, Mukherjee P (2010) Microstructural correlations of white matter tracts in the human brain. Neuroimage 51(2):531–541

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Tech 22(1): 53–66

  8. Garyfallidis E, Brett M, Amirbekian B, Rokem A, Van Der Walt S, Descoteaux M, Nimmo-Smith I (2014) Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform 8:1–17

    Article  Google Scholar 

  9. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  10. Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G, Vemuri B, Commowick O, Prima S, Stamm A, Goubran M, Khan A, Peters T, Neher P, Maier-Hein KH, Shi Y, Tristan-Vega A, Veni G, Whitaker R, Styner M, Westin CF, Gouttard S, Norton I, Chauvin L, Mamata H, Gerig G, Nabavi A, Golby A, Kikinis R (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25(6): 875–882

  11. O’Donnell LJ, Westin CF, Golby AJ (2009) Tract-based morphometry for white matter group analysis. Neuroimage 45(3):832–844

    Article  PubMed  Google Scholar 

  12. Gong G, Jiang T, Zhu C, Zang Y, Wang F, Xie S, Xiao J, Guo X (2005) Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Hum Brain Mapp 24(2):92–98

    Article  PubMed  Google Scholar 

  13. Lin F, Yu C, Jiang T, Li K, Li X, Qin W, Sun H, Chan P (2006) Quantitative analysis along the pyramidal tract by length-normalized parameterization based on diffusion tensor tractography: application to patients with relapsing neuromyelitis optica. Neuroimage 33(1):154–160

    Article  PubMed  Google Scholar 

  14. Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, Mori S (2006) Quantitative characterization of the corticospinal tract at 3T. AJNR Am J Neuroradiol 27(10):2168–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oh JS, Song IC, Lee JS, Kang H, Park KS, Kang E, Lee DS (2007) Tractography-guided statistics (TGIS) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa. Neuroimage 36:606–616

    Article  PubMed  Google Scholar 

  16. Oh JS, Kubicki M, Rosenberger G, Bouix S, Levitt JJ, McCarley RW, Westin CF, Shenton ME (2009) Thalamo-frontal white matter alterations in chronic schizophrenia: a quantitative diffusion tractography study. Hum Brain Mapp 30(11):3812–3825

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hong JH, Son SM, Jang SH (2010) Somatotopic location of corticospinal tract at pons in human brain: a diffusion tensor tractography study. Neuroimage 51:952–955

    Article  PubMed  Google Scholar 

  18. Hong YH, Lee KW, Sung JJ, Chang KH, Song IC (2004) Diffusion tensor MRI as a diagnostic tool of upper motor neuron involvement in amyotrophic lateral sclerosis. J Neurol Sci 227:73–78

    Article  PubMed  Google Scholar 

  19. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, Barker GJ et al (2003) Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abe O, Yamada H, Masutani Y, Aoki S, Kunimatsu A, Yamasue H, Fukuda R, Kasai K, Hayashi N, Masumoto T et al (2004) Amyotrophic lateral sclerosis: diffusion tensor tractography and voxelbased analysis. NMR Biomed 17:411–416

    Article  PubMed  Google Scholar 

  21. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27:1776–1781

    CAS  PubMed  Google Scholar 

  22. Jones D (2004) The Effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815

    Article  PubMed  Google Scholar 

  23. Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S (2007) Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage 36(4):1123–1138

    Article  PubMed  Google Scholar 

  24. Lebel C, Benner T, Beaulieu C (2012) Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magn Reson Med 68(2):474–483

    Article  PubMed  Google Scholar 

  25. Behrens T, Johansen Berg H, Jbabdi S, Rushworth M, Woolrich M (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155

    Article  CAS  PubMed  Google Scholar 

  26. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  27. Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  CAS  PubMed  Google Scholar 

  28. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H (1995) A fully automatic multimodality image registration algorithm. J Comput Assist Tomogr 19(4):615–623

  29. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781

    Article  PubMed  Google Scholar 

  30. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  31. Anderson VM, Wheeler-Kingshott CA, Abdel-Aziz K, Miller DH, Toosy A, Thompson AJ, Ciccarelli O (2011) A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Mult Scler 17(9):1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A, Barker GJ, Duncan JS (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19(4):1349–1360

    Article  PubMed  Google Scholar 

  33. Yasmin H, Aoki S, Abe O, Nakata Y, Hayashi N, Masutani Y, Goto M, Ohtomo K (2009) Tract-specific analysis of white matter pathways in healthy subjects: a pilot study using diffusion tensor MRI. Neuroradiology 51:831–840

    Article  PubMed  Google Scholar 

  34. Hattori T, Yuasa T, Aoki S, Sato R, Sawaura H, Mori T, Mizusawa H (2011) Altered microstructure in corticospinal tract in idiopathic normal pressure hydrocephalus: comparison with Alzheimer Disease and Parkinson Disease with dementia. AJNR Am J Neuroradiol 32:1681–1687

    Article  CAS  PubMed  Google Scholar 

  35. Surova Y, Szczepankiewicz F, Lätt J, Nilsson M, Eriksson B, Leemans A, Hansson O, van Westen D, Nilsson C (2013) Assessment of global and regional diffusion changes along white matter tracts in parkinsonian disorders by MR tractography. PLoS One 8(6):e66022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colby J, Soderbergc L, Lebel C, Dinova I, Thompson P, Sowel E (2012) Along-tract statistics allow for enhanced tractography analysis. Neuroimage 59(4):3227–3242

    Article  PubMed  Google Scholar 

  37. Holodny AI, Watts R, Korneinko VN, Pronin IN, Zhukovskiy ME, Gor DM, Ulug A (2005) Diffusion tensor tractography of the motor white matter tracts in man: Current controversies and future directions. Ann N Y Acad Sci 1064:88–97 (Review)

  38. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 25(3):356–369

    PubMed  Google Scholar 

  39. King MD, Gadian DG, Clark CA (2009) A random effects modelling approach to the crossing-fibre problem in tractography. Neuroimage 44(3):753–768

    Article  PubMed  Google Scholar 

  40. Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, Catani M (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1):49–59

    Article  PubMed  Google Scholar 

  41. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23(7):803–820

    Article  PubMed  Google Scholar 

  42. Barrio-Arranz G, de Luis-García R, Tristán-Vega A, Martín-Fernández M, Aja-Fernández S (2015) Impact of MR acquisition parameters on DTI scalar indexes: a tractography based approach. PLoS One 10(10):e0137905

    Article  PubMed  PubMed Central  Google Scholar 

  43. Al Masri O (2011) An essay on the human corticospinal tract: history, development, anatomy, and connections. Neuroanatomy 10:1–4

    Google Scholar 

  44. Nathan PW, Smith MC, Deacon P (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324

    Article  PubMed  Google Scholar 

  45. Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund HJ, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124(Pt 11):2232–2258

  46. Lebel C, Beaulieu C (2009) Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum Brain Mapp 30(11):3563–3573

    Article  PubMed  Google Scholar 

  47. Herve PY, Leonard G, Perron M, Pike B, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Handedness, motor skills and maturation of the corticospinal tract in the adolescent brain. Hum Brain Mapp 30:3151–3162

    Article  PubMed  Google Scholar 

  48. Westerhausen R, Huster RJ, Kreuder F, Wittling W, Schweiger E (2007) Corticospinal tract asymmetries at the level of the internal capsule: is there an association with handedness? Neuroimage 37: 379–386

  49. Papadakis NG, Xing D, Houston GC, Smith JM, Smith MI, James MF, Parsons AA, Huang CL, Hall LD, Carpenter TA (1999) A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging 17(6):881–892

    Article  CAS  PubMed  Google Scholar 

  50. Skare S, Hedehus M, Moseley ME, Li TQ (2000) Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 147(2):340–352

    Article  CAS  PubMed  Google Scholar 

  51. Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18(6):671–679

    Article  CAS  PubMed  Google Scholar 

  52. Yao X, Yu T, Liang B, Xia T, Huang Q, Zhuang S (2015) Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain. Korean J Radiol 16(2):410–418

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Claudio Bianchini for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Lodi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Testa, C., Evangelisti, S., Popeo, M. et al. The effect of diffusion gradient direction number on corticospinal tractography in the human brain: an along-tract analysis. Magn Reson Mater Phy 30, 265–280 (2017). https://doi.org/10.1007/s10334-016-0600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0600-1

Keywords

Navigation