Skip to main content
Log in

Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Newly generated neurons are continuously added to the olfactory epithelium and olfactory bulbs of adult mammals. Studies also report newly generated neurons in the piriform cortex, the primary cortical projection site of the olfactory bulbs. The current study used BrdU-injection paradigms, and in vivo and in vitro DiI tracing methods to address three fundamental issues of these cells: their origin, migratory route and fate. The results show that 1 day after a BrdU-injection, BrdU/DCX double-labeled cells appear deep to the ventricular subependyma, within the white matter. Such cells appear further ventral and caudal in the ensuing days, first appearing in the rostral piriform cortex of mice at 2 days after the BrdU-injection, and at 4 days in the rat. In the caudal piriform cortex, BrdU/DCX labeled cells first appear at 4 days after the injection in mice and 7 days in rats. The time it takes for these cells to appear in the piriform cortex and the temporal distribution pattern suggest that they migrate from outside this region. DiI tracing methods confirmed a migratory route to the piriform cortex from the ventricular subependyma. The presence of BrdU/NeuN labeled cells as early as 7 days after a BrdU injection in mice and 10 days in the rat and lasting as long as 41 days indicates that some of these cells have extended survival durations in the adult piriform cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration, and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in such brain regions. J Comp Neurol 126:337–389

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  • Bauer S, Peterson PH (2005) The cell cycle-apoptosis connection revisited in the adult brain. J Cell Biol 171:641–650

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1983) 3H-Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340

    Article  PubMed  CAS  Google Scholar 

  • Bedard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res 151:159–168

    Article  CAS  Google Scholar 

  • Bedard A, Levesque M, Bernier PJ, Parent A (2002) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci 16:1917–1924

    Article  PubMed  Google Scholar 

  • Belvindrah R, Rougon G, Chazal G (2002) Increased neurogenesis in adult mCD24-deficient mice. J Neurosci 22:3594–3607

    PubMed  CAS  Google Scholar 

  • Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306:309–316

    Article  PubMed  CAS  Google Scholar 

  • Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci 99:11464–11469

    Article  PubMed  CAS  Google Scholar 

  • Biebl M, Cooper C.M, Winkler J Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20

    Article  PubMed  CAS  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  PubMed  CAS  Google Scholar 

  • Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  PubMed  CAS  Google Scholar 

  • Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Kobayashi M, Honda Y, Kakuta S, Sato F, Kishi K (2007) Preferential neuron loss in the rat piriform cortex following pilocarpine-induced status epilepticus. Epilepsy Res 74:1–18

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Datiche F, Roullet F, Cattarelli M (2001) Expression of Fos in the piriform cortex after acquisition of olfactory learning: an immunohistochemical study in the rat. Brain Res Bull 55:95–99

    Article  PubMed  CAS  Google Scholar 

  • Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427

    Article  PubMed  CAS  Google Scholar 

  • De Marchis S, Fasolo A, Shipley M, Puche A (2001) Unique neuronal tracers show migration and differentiation of SVZ progenitors in organotypic slices. J Neurobiol 49:326–338

    Article  PubMed  Google Scholar 

  • De Marchis S, Fasolo A, Puche AC (2004) Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol 476:290–300

    Article  PubMed  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Elder GA, De Gasperi R, Gama Sosa MA (2006) Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 73:931–940

    PubMed  Google Scholar 

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256

    Article  PubMed  CAS  Google Scholar 

  • Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, Lledo PM (2002) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci 97:1823–1828

    Article  Google Scholar 

  • Haberly LB, Price JL (1977) The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res 129:152–157

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  • Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J. Neurosci 23: 937–942

    PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci 96:5768–5773

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  PubMed  CAS  Google Scholar 

  • Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003) Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci 100:13036–13041

    Article  PubMed  CAS  Google Scholar 

  • Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644

    Article  PubMed  CAS  Google Scholar 

  • Nacher J, Alonso-Llosa G, Rosell D, McEwen B (2002) PSA-NCAM expression in the piriform cortex of the adult rat. Modulation by NMDA receptor antagonist administration. Brain Res 927:111–121

    Article  PubMed  CAS  Google Scholar 

  • Nowakowski RS, Hayes NL (2000) New neurons: extraordinary evidence or extraordinary conclusion? Science 288:771

    Article  PubMed  CAS  Google Scholar 

  • Parent JM, von dem Bussche N, Lowenstein DH (2006) Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16:321–328

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New York

    Google Scholar 

  • Paxinos G, Franklin KBJ (2000) The mouse brain in stereotaxic coordinates, 2nd edn, Academic Press, New York

    Google Scholar 

  • Pekcec A, Loscher W, Potschka H (2006) Neurogenesis in the adult rat piriform cortex. NeuroReport 17:571–574

    Article  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Price JL (1973) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  • Ribak CE, Korn MJ, Shan Z, Obenaus A (2004) Dendritic growth cones and recurrent basal dendrites are typical features of newly-generated dentate granule cells in the adult hippocampus. Brain Res 1000:195–199

    Article  PubMed  CAS  Google Scholar 

  • Rochefort C, Gheusi G, Vincent JD, Lledo PM (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22:2679–2689

    PubMed  CAS  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LA, Korn MJ, Shan Z, Ribak CE (2005) GFAP-expressing radial glia-like cell bodies are involved in a one-to-one relationship with doublecortin-immunolabeled newborn neurons in the adult dentate gyrus. Brain Res 1040:81–91

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LA, Upadhyaya P, Ribak CE (2007a) Spatio-temporal profile of dendritic outgrowth from newly born granule cells in the adult rat dentate gyrus. Brain Res 1149:30–37

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LA, Ng KL, Zhou Q-Y, Ribak CE (2007b) Olfactory enrichment enhances the survival of newborn neurons in the adult mouse piriform cortex. NeuroReport 18:981–985

    Article  PubMed  Google Scholar 

  • Sugai T, Miyazawa T, Fukuda M, Yoshimura H, Onoda N (2005) Odor-concentration coding in the guinea-pig piriform cortex. Neuroscience 130:769–781

    Article  PubMed  CAS  Google Scholar 

  • Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hyland K, Szele FG (2004) Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 76:282–295

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18:779–791

    Article  PubMed  CAS  Google Scholar 

  • Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur. J Neurosci 16:1681–1689

    Article  PubMed  Google Scholar 

  • Zou Z, Li F, Buck LB (2005) Odor maps in the olfactory cortex. Proc Natl Acad Sci USA 102:7724–7729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to recognize the contribution of Dr. Zhiyin Shan and Matthew Korn for their technical expertise, Dr. Jorge Busciglio and Atul Deshpande for their help with the real-time video microscopy, and Drs. Mark Jacquin, Michael Leon and Richard Robertson for their meaningful discussions regarding these data. We also acknowledge support from NIH grant R01-NS38331 (to CER), NIH training grant T32-NS45540 (for LAS), University of California Discovery Program (for Q-YZ and KN) and an Unrestricted Grant from Research to Prevent Blindness (for EEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Ribak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2007_151_MOESM1_ESM.tif

24 hr. Fluorescent images of in vitro DiI-labeled cells at 24 hrs after DII implantation of p10 rats. Note the bright bolus of DiI and sparse labeled- cells slightly ventral to the bolus. (TIF 659 kb)

429_2007_151_MOESM2_ESM.tif

48 hr. Fluorescent images of in vitro DiI-labeled cells at48 hrs after DII implantation of p10 rats. Note the bolus, more labeled cells and further ventral. (TIF 448 kb)

429_2007_151_MOESM3_ESM.tif

72 hr. Fluorescent images of in vitro DiI-labeled cells at72 hrs after DII implantation of p10 rats. Note the stream of cells emanating along the subcortical white matter. (TIF 434 kb)

429_2007_151_MOESM4_ESM.tif

96 hr. Fluorescent images of in vitro DiI-labeled cells at 96 hrs after DII implantation of p10 rats. Note the dense numbers of cells, ventral location and widespread distribution in the endopiriform nucleus. Refer them to the figure showing the DCX-labeled cells throughout the endopiriform nucleus. (TIF 460 kb)

Time-lapse confocal microscopy of the piriform cortex 7 days after DiI-implantation. The video encompasses a 14 hour time period. Note that several DiI-labeled cells can be seen to come in and out of the plane of focus of the microscope and DiI-labeled cells can be seen to move ventrally into the piriform cortex. (AVI 63012 kb)

ESM6 (PPT 327 kb)

ESM7 (PPT 181 kb)

ESM8 (PPT 939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, L.A., Ng, K.L., Kinyamu, R. et al. Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct 212, 133–148 (2007). https://doi.org/10.1007/s00429-007-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0151-3

Keywords

Navigation