Skip to main content
Log in

Glial cytoarchitecture in the central nervous system of the soft-shell turtle, Trionyx sinensis, revealed by intermediate filament immunohistochemistry

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The distribution of the intermediate filament molecular markers, glial fibrillary acidic protein (GFAP) and vimentin, has been studied in the central nervous system (CNS) of the soft-shell turtle (Trionyx sinensis) with immunoperoxidase histochemistry. GFAP immunohistochemistry pointed out the presence of different astroglial cell types. The brain pattern consists of ependymal radial glia whose cell bodies are located in the ependymal layer throughout the brain ventricular system. In the spinal cord, the ependyma is immunonegative, whereas positive radial astrocyte cell bodies are displaced from the ependyma into the periependymal position. Star-shaped astrocytes are observed only in the posterior intumescence of the spinal cord. The different regions of the CNS show a different intensity in GFAP immunostaining even in the same cellular type. Vimentin-immunoreactive structures are absent in the brain and spinal cord. The present study reports an heterogeneous feature of the astroglial pattern in the spinal cord compared to the brain which shows an ancestral condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JC (1981) Heavy-metal intensification of DAB-based reaction product. J Histochem Cytochem 29:775

    PubMed  CAS  Google Scholar 

  • Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141:41–53

    Article  PubMed  Google Scholar 

  • Bignami A, Dahl D, Rueger DC (1980) Glial fibrillary acidic protein (GFAP) in normal cells and in pathological conditions. Adv Cell Neurobiol 1:285–310

    CAS  Google Scholar 

  • Bodega G, Suarez I, Rubio M, Fernandez B (1994) Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry 102:113–122

    Article  PubMed  CAS  Google Scholar 

  • Butler AB, Hodos W (2005) Vertebrate neuroanatomy. Evolution and adaptation, 2nd edn. Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  • Cardone B, Roots BJ (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia 3:180–192

    Article  PubMed  CAS  Google Scholar 

  • Dahl D (1976) Isolation and initial characterization of glial fibrillary acidic protein from chicken, turtle, frog, and fish central nervous system. Acta Biochim Biophys 446:41–50

    CAS  Google Scholar 

  • Dahl D, Bignami A (1973) Immunohistochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res 61:279–283

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Bignami A (1985) Intermediate filaments in nervous tissue. In: Shay JW (ed) Cell and muscle motility, vol 6. Plenum Press, New York, pp 75–96

  • Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57,000 molecular weight protein in fibroblast filaments in the major cytoskeletal protein in immature glia. Eur J Cell Biol 24:191–196

    PubMed  CAS  Google Scholar 

  • Dahl D, Strocchi P, Bignami A (1982) Vimentin in the central nervous system. A study of the mesenchymal-type intermediate filament-protein in Wallerian degeneration and in postnatal rat development by two-dimensional gel electrophoresis. Differentiation 22:185–190

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Crosby CJ, Sethi JS, Bignami A (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol 239:75–88

    Article  PubMed  CAS  Google Scholar 

  • Ebner FF, Colonnier M (1975) Synaptic patterns in the visual cortex of turtle: an electron microscopic study. J Comp Neurol 160:51–80

    Article  PubMed  CAS  Google Scholar 

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274:23996–24006

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Swanson JJ, Sakaguchi DS, Ross LR, Jacobson CD (1994) Developmental distribution of GFAP and vimentin in the Brazilian opossum brain. J Comp Neurol 344:283–296

    Article  PubMed  CAS  Google Scholar 

  • Hajos F, Kalman M (1989) Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. II. Mesencephalon, rhombencephalon and spinal cord. Exp Brain Res 78:164–173

    Article  PubMed  CAS  Google Scholar 

  • Hedges BS, Poling LL (1999) A molecular phylogeny of reptiles. Science 283:1–7

    Article  Google Scholar 

  • Hirrlinger J, Hulsmann S, Kirchoff F (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20:2235–2239

    Article  PubMed  Google Scholar 

  • Iwabe N, Hara Y, Shibamoto K, Saito Y, Mivata T, Katoh K (2005) Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol 22:810–813

    Article  PubMed  CAS  Google Scholar 

  • Kalman M (1998) Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunocytochemical staining against glial fibrillary acidic protein (GFAP). Anat Embryol 198:409–433

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Pritz MB (2001) Glial fibrillary acidic protein-immunopositive structures in the brain of a crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J Comp Neurol 431:460–480

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Szekely A, Csillag A (1993a) GFAP and vimentin in the developing chicken brain. Anat Anz (Suppl) 175:130–131

    Google Scholar 

  • Kalman M, Szekely A, Csillag A (1993b) Distribution of glial fibrillary acidic protein-immunoreactive structures in the brain of the domestic chicken (Gallus domesticus). J Comp Neurol 330:221–237

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Kiss A, Majorossy K (1994) Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the red-eared freshwater turtle (Pseudemys scripta elegans). Anat Embryol 189:421–434

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Kiss A, Majorossy K (1995) Vimentin-immunopositive structures in the brain of the adult turtle Pseudemys scripta elegans. Ann Anat (Suppl) 177:195

    Google Scholar 

  • Kalman M, Martin-Partido G, Hidalgo-Sanchez M, Majorossy K (1997) Distribution of glial fibrillary acidic protein–immunopositive structures in the developing brain of the turtle Mauremys leprosa. Anat Embryol 196:47–65

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Szekely AD, Csillag A (1998) Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol 198:213–235

    Article  PubMed  CAS  Google Scholar 

  • Krenz JG, Naylor GJP, Shaffer HB, Janzen FJ (2005) Molecular phylogenetics and evolution of turtles. Mol Phylogenet Evol 37:178–191

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein AR, Shen JM, Eshbar N (1986) Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation. J Comp Neurol 254:330–340

    Article  PubMed  CAS  Google Scholar 

  • Lazzari M, Franceschini V (2001) Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of adult Podarcis sicula (Squamata, Lacertidae). J Anat 198:67–75

    Article  PubMed  CAS  Google Scholar 

  • Lazzari M, Franceschini V (2004) Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae). J Morphol 262:741–749

    Article  PubMed  CAS  Google Scholar 

  • Lazzari M, Franceschini V (2005a) Intermediate filament immunohistochemistry of astroglial cells in the leopard gecko, Eublepharis macularius. Anat Embryol 210:275–286

    Article  PubMed  Google Scholar 

  • Lazzari M, Franceschini V (2005b) Astroglial cells in the central nervous system of the Brown Anole Lizard, Anolis sagrei, revealed by intermediate filament immunohistochemistry. J Morphol 265:325–334

    Article  PubMed  Google Scholar 

  • Lazzari M, Franceschini V, Ciani F (1997) Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: an immunocytochemical study. J Brain Res 38:187–194

    CAS  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing Rhesus monkey brain. J Comp Neurol 193:815–840

    Article  PubMed  CAS  Google Scholar 

  • Mannen H, Li SS (1999) Molecular evidence for a clade of turtles. Mol Phylogen Evol 13:144–148

    Article  CAS  Google Scholar 

  • Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y, Nishimura O, Ishijima J, Hayashi A, Saito T, Murakami T, Kuratani S, Agata K (2005) Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res 13:601–615

    Article  PubMed  CAS  Google Scholar 

  • Monzon-Mayor M, Yanes C, Ghandour MS, de Barry J, Gombos G (1990) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J Comp Neurol 295:569–579

    Article  PubMed  CAS  Google Scholar 

  • Monzon-Mayor M, Yanes C, De Barry J, Capdevilla-Carbonell C, Renau-Piqueras J, Tholey G, Gombos G (1998) Heterogeneous immunoreactivity in glial cells in the mesencephalon of a lizard: a double labelling immunohistochemical study. J Morphol 235:109–119

    Article  PubMed  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    Article  PubMed  CAS  Google Scholar 

  • Onteniente B, Kimura H, Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215:427–436

    Article  PubMed  CAS  Google Scholar 

  • Pixley SK, de Vellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 317:201–209

    PubMed  CAS  Google Scholar 

  • Rieppel O, deBraga M (1996) Turtle as diapsid reptiles. Nature 384:453–455

    Article  CAS  Google Scholar 

  • Roots BI (1986) Phylogenetic development of astrocytes. In: Vernadakis A, Fedoroff S (eds) Astrocytes. Academic, Orlando, pp 1–34

    Google Scholar 

  • Rubio M, Suarez I, Bodega G, Fernandez B (1992) Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci Lett 134:203–206

    Article  PubMed  CAS  Google Scholar 

  • Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol 156:115–152

    Article  PubMed  CAS  Google Scholar 

  • Simard M, Arcuino G, Takano T, Liu OS, Nedergaard M (2003) Signaling at the glio–vascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  • Stensaas LJ, Stensaas SS (1968) Light microscopy of glial cells in turtles and birds. Z Zellforsch Mikrosk Anat 91:315–340

    Article  PubMed  CAS  Google Scholar 

  • Szaro BG, Gainer H (1988) Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Dev Brain Res 43:207–224

    Article  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  • Yanes C, Monzon-Mayor M, Ghandour MS, de Barry J, Gombos G (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol 295:559–568

    Article  PubMed  CAS  Google Scholar 

  • Zamora AJ, Mutin M (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neurosci 27:279–288

    Article  CAS  Google Scholar 

  • Zardoya R, Meyer A (1998) Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci USA 95:14226–14231

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R, Meyer A (2001) The evolutionary position of turtles revised. Naturwissenschaften 88:193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministero dell’Istruzione, dell’Università e della Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Lazzari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzari, M., Franceschini, V. Glial cytoarchitecture in the central nervous system of the soft-shell turtle, Trionyx sinensis, revealed by intermediate filament immunohistochemistry. Anat Embryol 211, 497–506 (2006). https://doi.org/10.1007/s00429-006-0101-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0101-5

Keywords

Navigation