Skip to main content
Log in

Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord

  • Original Paper
  • Published:
Histochemistry Aims and scope Submit manuscript

Abstract

The phylogenetic evolution was studied of both glial fibrillary acidic protein (GFAP) and vimentin expression in the ependyma of the adult vertebrate spinal cord. Eleven species from different vertebrate groups were examined using different fixatives and fixation procedures to demonstrate any differences in immunoreactivity. GFAP expression in the ependymal cells showed a clear inverse relation with phylogenetic evolution because it was more elevated in lower than in higher vertebrates. GFAP positive cells can be ependymocytes and tanycytes, although depending on their structural characteristics and distribution, the scarce GFAP positive ependymal cells in higher vertebrates may be tanycytes. Ependymal vimentin expression showed a species-dependent pattern instead of a phylogenetic pattern of expression. Vimentin positive ependymal cells were only found in fish and rats; in fish, they were tanycytes and were quite scarce, with only one or two cells per section being immunostained. However, in the rat spinal cord, all the ependymocytes showed positive immunostaining for vimentin. The importance of the immunohistochemical procedure, the cellular nature of GFAP positive ependymal cells and the relationship between tanycytes and ependymocytes are discussed, as well as GFAP and vimentin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-el-Basset EM, Ahmed I, Kalnins VI, Fedoroff S (1992) Immuno-electron microscopical localization of vimentin and glial fibrillary acidic protein in mouse astrocytes and their precursor cells in culture. Glia 6:149–153

    Google Scholar 

  • Alibardi L, Meyer-Rochow VB (1990) Fine structure of regenerating caudal spinal cord in adult tuatara (Sphenodon punctatus). J Hirnforsh 31:613–621

    Google Scholar 

  • Alvarez-Buylla A, Buskirk DR, Nottebohm F (1987) Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 264:159–170

    Google Scholar 

  • Anderson MJ, Swanson KA, Waxman SG, Eng LF (1984) Glial fibrillary acidic protein in regenerating teleost spinal cord. J Histochem Cytochem 31:1099–1106

    Google Scholar 

  • Anderson MJ, Choy CY, Waxman SG (1986) Self-organization of ependyma in regenerating teleost spinal cord: evidence from serial sections reconstructions. J Embryol Exp Morphol 96:1–18

    Google Scholar 

  • Balercia G, Bentivoglio M, Kruger L (1992) Fine structural organization of the ependymal region of the paraventricular nucleus of the rat thalamus and its relation with projection neurons. J Neurocytol 21:105–119

    Google Scholar 

  • Bascó E, Woodhams PL, Hajós F, Balázs R (1981) Immunocytochemical demonstration of glial fibrillay acidic protein mouse tanycytes. Anat Embryol 162:217–222

    Google Scholar 

  • Benjelloun-Touimi S, Jacque CM, Derer P, De Vitry F, Maunory R, Dupouey P (1985) Evidence that mouse astrocytes may be derived from the radial glia. An immunohistochemical study of the cerebellum in the normal and reeler mouse. J Neuroimmunol 9:87–97

    Google Scholar 

  • Bjugn R, Boe R, Haugland HK (1988) A stereological study of the ependyma of the mouse spinal cord. With a comparative note on the choroid plexus ependyma. J Anat 166:171–178

    Google Scholar 

  • Bodega G, Suárez I, Fernández B (1990a) Radial astrocytes and ependymocytes in the spinal cord of the adult toad (Bufo bufo L.). An immunohistochemical and ultrastructural study. Cell Tissue Res 260:307–314

    Google Scholar 

  • Bodega G, Suárez I, Rubio M, Fernández B (1990b) Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anat Embryol 181:567–575

    Google Scholar 

  • Bodega G, Suárez I, Arilla E, Rubio M, Fernández B (1991) Heterogeneous astroglial response in the rat spinal cord to long-term portacaval shunt: an immunohistochemical study. Glia 4:400–407

    Google Scholar 

  • Bodega G, Suárez I, Rubio M, Villaba RM, Fernández B (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol 187:385–395

    Google Scholar 

  • Bovolenta P, Liem RKH, Mason CA (1984) Development of cerebellar astroglia: transitions in form and cytoskeletal content. Dev Biol 102:248–259

    Google Scholar 

  • Bruni JE, Reddy K (1987) Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study. J Anat 152:55–70

    Google Scholar 

  • Bruni JE, Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res Rev 9:1–19

    Google Scholar 

  • Bullón MM, Alvarez-Gago T, Fernández B, Aguirre C (1984) Glial fibrillary acidic (GFAP) protein in rat spinal cord. An immunoperoxidase study in semithin sections. Brain Res 309:79–83

    Google Scholar 

  • Cameron-Curry P, Aste N, Viglietti-Panzica C, Panzica GC (1991) Immunocytochemical distribution of glial fibrillary acidic protein in the central nervous system of the japanese quail (Coturnix coturnix japonica). Anat Embryol 184:571–581

    Google Scholar 

  • Cardone B, Roots BI (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia 3:180–192

    Google Scholar 

  • Chouaf L, Didier-Bazes M, Aguera M, Tardy M, Sallanon M, Kitahama K, Belin MF (1989) Comparative marker analysis of the ependymocytes of the subcommissural organ in four different mammalian species. Cell Tissue Res 257:255–262

    Google Scholar 

  • Chouaf L, Didier-Bazes M, Hardin H, Aguera M, Fevre-Montange M, Voutsinos B, Belin F (1991) Developmental expression of glial markers in ependymocytes of the rat subcommissural organ: role of the environment. Cell Tissue Res 266:553–561

    Google Scholar 

  • Dahl D (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res 6:741–748

    Google Scholar 

  • Dahl D, Bignami A (1973) Immunochemical and immunofluorescence studies of the GFAP in vertebrates. Brain Res 61:279–293

    Google Scholar 

  • Dahl D, Crosby CJ, Sethi JS, Bignami A (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol 239:75–88

    Google Scholar 

  • Del Brío MA, Riera P, García JM, Alvarez-Uría M (1991) Cell types of the third ventricle wall of the rabbit (Oryctolagus cuniculus). J Submicrosc Cytol Pathol 23:147–157

    Google Scholar 

  • De Vitry F, Picart R, Jacque C, Legault L, Dupouey P, Tixier-Vidal A (1980) Presumptive common precursor for neuronal and glial cell lineages in mouse hypothalamus. Proc Natl Acad Sci USA 77:4165–4169

    Google Scholar 

  • De Vitry F, Picart R, Jacque C, Tixier-Vidal A (1981) Glial fibrillary acidic protein. A cellular marker of tanycytes in the mouse hypothalamus. Dev Neurosci 4:457–460

    Google Scholar 

  • Didier M, Harandi M, Aguera M, Bancel B, Tardy M, Fages C, Calas A, Stagaard M, Mollgard K, Belin MF (1986) Differential immunocytochemical staining for GFA protein, S-100 protein and glutamine synthetase in the rat subcommissural organ, nonspecialized ventricular ependyma and adjacent neuropil. Cell Tissue Res 245:343–351

    Google Scholar 

  • Edwards MA, Yamamoto M, Caviness VS (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36:121–144

    Google Scholar 

  • Eng LF (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8:203–214

    Google Scholar 

  • Eng LF, DeArmond SJ (1983) Immunocytochemistry of the glial fibrillary acidic protein. Prog Neuropathol 5:19–39

    Google Scholar 

  • Flament-Duran J, Brion JP (1985) Tanycytes: morphology and functions: a review. Int Rev Cytol 96:121–155

    Google Scholar 

  • Gould SJ, Howard S, Papadaki L (1990) The development of ependyma in the human fetal brain: an immunohistological and electron microscopic study. Dev Brain Res 55:255–267

    Google Scholar 

  • Hajós F, Bascó E (1984) The surface-contact glia. Adv Anat Embryol Cell Biol 84:1–81

    Google Scholar 

  • Hirano M, Goldman JE (1988) Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21:155–167

    Google Scholar 

  • Horstmann E (1954) Die faserglia des selachiergehirns. Z Zellforsch 39:588–617

    Google Scholar 

  • Horstmann E (1959) Zur frage des extracellulären raumes in zentralnervensystem. Anat Anz 105:100–106

    Google Scholar 

  • Joosten EAJ, Gribnau AAM (1989) Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein. Neuroscience 31:439–452

    Google Scholar 

  • Jordan FJ, Rieke GK, Hughes BW, Thomas WE (1990) Morphological diversity of ependymal cells in tissue culture. Brain Res Bull 25:159–163

    Google Scholar 

  • Korte GE, Rosenbluth J (1981) Ependymal astrocytes in the frog cerebellum. Anat Rec 199:267–279

    Google Scholar 

  • Lauro GM, Fonti R, Margotta V (1991) Phylogenetic evolution of intermediate filament associated proteins in ependymal cells of several adult poikilotherm vertebrates. J Hirnforsch 32:257–261

    Google Scholar 

  • Leonhardt H, Kirsch B, Erhardt H (1987) Organization of the neuroglia in the midsagittal plane of the central nervous system: a speculative report. In: Scharrer B, Korf HW, Hartwig HG (eds) Functional morphology of neuroendocrine systems. Springer, Berlin Heidelberg, pp 175–187

    Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing Rhesus monkey brain. J Comp Neurol 193:815–840

    Google Scholar 

  • Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci 1:27–39

    Google Scholar 

  • Lukás Z, Dráber P, Bucek J, Dráberová E, Viklicky V, Stasková Z (1989) Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord Histochem. J 21:693–702

    Google Scholar 

  • Lyser KM (1972) The fine structure of glial cells in the chicken. J Comp Neurol 146:83–94

    Google Scholar 

  • Mares V, Viklicky V, Gerstein LM, Dráber P, Ciesielski-Treska J (1988) Immunocytochemistry and heterogeneity of rat brain vimentin. Histochemistry 88:575–581

    Google Scholar 

  • Margotta V, Fonti R, Palladini G, Filoni S, Lauro GM (1991) Transient expression of glial fibrillary acidic protein (GFAP) in the ependyma of the regenerating spinal cord in adult newts. J Hirnforsch 32:485–490

    Google Scholar 

  • Meikle ADS, Martin AH (1981) A rapid method for removal of the spinal cord. Stain Technol 56:235–237

    Google Scholar 

  • Miller RH, Liuzzi FJ (1986) Regional specialization of the radial glial cells of the adult frog spinal cord. J Neurocytol 15:187–196

    Google Scholar 

  • Millhouse OE (1971) A Golgi study of third ventricle tanycytes in the adult rodent brain. Z Zellforsch 121:1–13

    Google Scholar 

  • Millhouse OE (1972) Light and electron microscopic studies of the ventricular wall. Z Zellforsch 127:149–174

    Google Scholar 

  • Monzón-Mayor M, Yanes C, Ghandour MS, De Barry J, Gombos G (1990) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J Comp Neurol 294:1–11

    Google Scholar 

  • Monzón-Mayor M, Yanes C, Janes JL, Sturrock RR (1991) An ultrastructural study of ependymal cell differentiation during lizard (Gallotia galloti) midbrain development. J Anat 174:251–261

    Google Scholar 

  • Mori K, Ikeda J, Hayaishi O (1990) Monoclonal antibody R2D5 reveals midsagittal radial glial system in postnatally developing and adult brainstem. Proc Natl Acad Sci USA 87:5489–5493

    Google Scholar 

  • Nona SN, Shehab SAS, Stafford CA, Cronly-Dillon JR (1989) Glial fibrillary acidic protein (GFAP) from goldfish: its localisation in the visual pathway. Glia 2:189–200

    Google Scholar 

  • O'Hara CM, Egar MW, Chernoff EAG (1992) Reorganization of the ependyma during axolotl spinal cord regeneration: changes in intermediate filament and fibronectin expression. Dev Dyn 193:103–115

    Google Scholar 

  • Onteniente B, Kimura H, Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215:427–436

    Google Scholar 

  • Oudega M, Marani E (1991) Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system. J Anat 179:97–114

    Google Scholar 

  • Paul E (1967) Uber die typen der ependymzellen und ihre regionale verteilung bei Rana temporaria L. mit bemerkungen über die tanycytenglia. Z Zellforsch 80:461–487

    Google Scholar 

  • Quitschke W, Jones PS, Schechter N (1985) Survey of intermediate filament proteins in optic nerve and spinal cord: evidence for differential expression. J Neurochem 44:1465–1476

    Google Scholar 

  • Rafols JA, Coshgarian HG (1985) Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study. Anat Rec 211:75–86

    Google Scholar 

  • Ramón y Cajal S (1919) Nota sobre las epitelio fibrillas del epéndimo. Trab Lab Invest Biol 17:87–94

    Google Scholar 

  • Roessmann U, Velasco ME, Sindley SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 200:13–21

    Google Scholar 

  • Rubinstein LJ, Herman MM (1989) The astroblastoma and its possible cytogenic relationship to the tanycyte. An electron microscopic, immunohistochemical, tissue- and organ-culture study. Acta Neuropathol 78:472–483

    Google Scholar 

  • Rubio M, Suárez I, Bodega G, Fernández B (1992) Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the iberian barb (Barbus comiza). Neurosci Lett 134:203–206

    Google Scholar 

  • Sarnat HB (1992a) Regional differentiation of the human fetal ependyma: immunocytochemical markers. J Neuropathol Exp Neurol 51:58–75

    Google Scholar 

  • Sarnat HB (1992b) Role of human fetal ependyma. Pediatr Neurol 8:163–178

    Google Scholar 

  • Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447

    Google Scholar 

  • Schonbach C (1969) The neuroglia in the spinal cord of the newt, Triturus viridescens. J Comp Neurol 135:93–120

    Google Scholar 

  • Seitz R, Löhler J, Schwendemann G (1981) Ependyma and meninges of the spinal cord of the mouse: a light- and electron-microscopic study. Cell Tissue Res 220:61–72

    Google Scholar 

  • Seress L (1980) Development and structure of the radial glia in the postnatal brain. Anat Embryol 160:213–226

    Google Scholar 

  • Shehab SSA, Stafford CA, Nona SN, Cronly-Dillon JR (1989) Anti-goldfish glial fibrillary acidic protein (GFAP) recognises astrocytes from rat CNS. Brain Res 504:343–346

    Google Scholar 

  • Simpson SB (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. I. Initiation of regeneration and cartilage differentiation: the role of the ependyma. J Morphol 114:425–436

    Google Scholar 

  • Stevenson JA, Yoon MG (1982) Morphology of radial glia, ependymal cels, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J Comp Neurol 205:128–138

    Google Scholar 

  • Suárez I, Fernández B, Bodega G, Tranque P, Olmos G, García-Segura LM (1987) Postnatal development of glial fibrillary acidic protein immunoreactivity in the hamster arcuate nucleus. Dev Brain Res 37:89–95

    Google Scholar 

  • Szaro BG, Gainer H (1988) Immunocytochemical identification of non-neuronal intermediate filament protein in the developing Xenopus laevis nervous system. Dev Brain Res 43:207–224

    Google Scholar 

  • Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament protein in the developing chick spinal cord. Dev Biol 86:40–54

    Google Scholar 

  • Tennyson VM, Pappas GD (1962) An electron microscope study of ependymal cells of the fetal, early postnatal and adult rabbit. Z Zellforsch 56:595–618

    Google Scholar 

  • Yamada T, Kawamata T, Walker DG, McGeer PL (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 84:157–162

    Google Scholar 

  • Yanes C, Monzón-Mayor M, Ghandour MS, De Barry J, Gombos G (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol 295:559–568

    Google Scholar 

  • Zamora AJ, Mutin M (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience 27:279–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodega, G., Suárez, I., Rubio, M. et al. Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry 102, 113–122 (1994). https://doi.org/10.1007/BF00269015

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269015

Keywords

Navigation