Skip to main content

Advertisement

Log in

Diffuse large B-cell lymphomas, not otherwise specified, and emerging entities

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogenous group of diseases and the most common subtype of non-Hodgkin lymphoma. In the past decade, there has been an explosion in molecular profiling that has helped to identify subgroups and shared oncogenic driving mechanisms. Since the 2017 World Health Organization (WHO) classification, additional studies investigating these genomic abnormalities and phenotypic findings have been reported. Here we review these findings in DLBCL and address the proposed changes by the 2022 International Consensus Classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

There is no data generated from this article.

References

  1. Swerdlow S, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, Thiele, J, Arber, DA, Hasserjian, RP, Le Beau, MM, Orazi, A, and Siebert, R (2017) WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer, Lyon, France, pp

  2. Campo E, Jaffe ES, Cook JR et al (2022) The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 140:1229–1253. https://doi.org/10.1182/blood.2022015851

    Article  CAS  Google Scholar 

  3. Alaggio R, Amador C, Anagnostopoulos I et al (2022) The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours Lymphoid Neoplasms. Leukemia 36:1720–1748

    Article  Google Scholar 

  4. Lai R, Medeiros LJ, Dabbagh L et al (2000) Sinusoidal CD30-positive large B-cell lymphoma: a morphologic mimic of anaplastic large cell lymphoma. Mod Pathol 13:223–228. https://doi.org/10.1038/modpathol.3880041

    Article  CAS  Google Scholar 

  5. Oliveira JL, Grogg KL, Macon WR et al (2012) Clinicopathologic features of B-cell lineage neoplasms with aberrant expression of CD3: a study of 21 cases. Am J Surg Pathol 36:1364–1370. https://doi.org/10.1097/PAS.0b013e31825e63a9

    Article  Google Scholar 

  6. Durani U, Ansell SM (2021) CD5+ diffuse large B-cell lymphoma: a narrative review. Leuk Lymphoma 62:3078–3086. https://doi.org/10.1080/10428194.2021.1953010

    Article  CAS  Google Scholar 

  7. Hu B, Nastoupil LJ, Loghavi S et al (2020) De novo CD5+ diffuse large B-cell lymphoma, NOS: clinical characteristics and outcomes in rituximab era. Leuk Lymphoma 61:328–336. https://doi.org/10.1080/10428194.2019.1663418

    Article  CAS  Google Scholar 

  8. Tzankov A, Leu N, Muenst S et al (2015) Multiparameter analysis of homogeneously R-CHOP-treated diffuse large B cell lymphomas identifies CD5 and FOXP1 as relevant prognostic biomarkers: report of the prospective SAKK 38/07 study. J Hematol Oncol 8:70. https://doi.org/10.1186/s13045-015-0168-7

    Article  CAS  Google Scholar 

  9. Hsiao SC, Cortada IR, Colomo L et al (2012) SOX11 is useful in differentiating cyclin D1-positive diffuse large B-cell lymphoma from mantle cell lymphoma. Histopathology 61:685–693. https://doi.org/10.1111/j.1365-2559.2012.04260.x

    Article  Google Scholar 

  10. Cheng J, Hashem MA, Barabe F et al (2021) CCND1 genomic rearrangement as a secondary event in high grade B-cell lymphoma. Hemasphere 5:e505. https://doi.org/10.1097/HS9.0000000000000505

    Article  Google Scholar 

  11. Ok CY, Xu-Monette ZY, Tzankov A et al (2014) Prevalence and clinical implications of cyclin D1 expression in diffuse large B-cell lymphoma (DLBCL) treated with immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Cancer 120:1818–1829. https://doi.org/10.1002/cncr.28664

    Article  CAS  Google Scholar 

  12. Koduru PR, Chen W, Garcia R et al (2015) Acquisition of a t(11;14)(q13;q32) in clonal evolution in a follicular lymphoma with a t(14;18)(q32;q21) and t(3;22)(q27;q11.2). Cancer Genet 208:303–309. https://doi.org/10.1016/j.cancergen.2015.03.007

    Article  CAS  Google Scholar 

  13. Horn H, Ziepert M, Becher C et al (2013) MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121:2253–2263. https://doi.org/10.1182/blood-2012-06-435842

    Article  CAS  Google Scholar 

  14. Staiger AM, Ziepert M, Horn H et al (2017) Clinical impact of the cell-of-origin classification and the MYC/ BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German high-grade non-Hodgkin’s lymphoma study group. J Clin Oncol 35:2515–2526. https://doi.org/10.1200/JCO.2016.70.3660

    Article  CAS  Google Scholar 

  15. Meriranta L, Pasanen A, Alkodsi A et al (2020) Molecular background delineates outcome of double protein expressor diffuse large B-cell lymphoma. Blood Adv 4:3742–3753. https://doi.org/10.1182/bloodadvances.2020001727

    Article  CAS  Google Scholar 

  16. Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511. https://doi.org/10.1038/35000501

    Article  CAS  Google Scholar 

  17. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282. https://doi.org/10.1182/blood-2003-05-1545

    Article  CAS  Google Scholar 

  18. Leonard JP, Kolibaba KS, Reeves JA et al (2017) Randomized phase II study of R-CHOP with or without bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large B-cell lymphoma. J Clin Oncol 35:3538–3546. https://doi.org/10.1200/JCO.2017.73.2784

    Article  CAS  Google Scholar 

  19. Nowakowski GS, Chiappella A, Gascoyne RD et al (2021) ROBUST: a phase III study of lenalidomide plus R-CHOP versus placebo plus R-CHOP in previously untreated patients with ABC-type diffuse large B-cell lymphoma. J Clin Oncol 39:1317–1328. https://doi.org/10.1200/JCO.20.01366

    Article  CAS  Google Scholar 

  20. Frauenfeld L, Castrejon-de-Anta N, Ramis-Zaldivar JE et al (2022) Diffuse large B-cell lymphomas in adults with aberrant coexpression of CD10, BCL6, and MUM1 are enriched in IRF4 rearrangements. Blood Adv 6:2361–2372. https://doi.org/10.1182/bloodadvances.2021006034

    Article  CAS  Google Scholar 

  21. Colomo L, Loong F, Rives S et al (2004) Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am J Surg Pathol 28:736–747. https://doi.org/10.1097/01.pas.0000126781.87158.e3

    Article  Google Scholar 

  22. Meyer PN, Fu K, Greiner TC et al (2011) Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol 29:200–207. https://doi.org/10.1200/JCO.2010.30.0368

    Article  Google Scholar 

  23. Choi WW, Weisenburger DD, Greiner TC et al (2009) A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res 15:5494–5502. https://doi.org/10.1158/1078-0432.CCR-09-0113

    Article  CAS  Google Scholar 

  24. Ahmed S, Glover P, Taylor J et al (2021) Comparative analysis of gene expression platforms for cell-of-origin classification of diffuse large B-cell lymphoma shows high concordance. Br J Haematol 192:599–604. https://doi.org/10.1111/bjh.17246

    Article  CAS  Google Scholar 

  25. Scott DW, Wright GW, Williams PM et al (2014) Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 123:1214–1217. https://doi.org/10.1182/blood-2013-11-536433

    Article  CAS  Google Scholar 

  26. Wilson WH, Wright GW, Huang DW et al (2021) Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 39(1643–1653):e1643. https://doi.org/10.1016/j.ccell.2021.10.006

    Article  CAS  Google Scholar 

  27. Wright GW, Huang DW, Phelan JD et al (2020) A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 37(551–568):e514. https://doi.org/10.1016/j.ccell.2020.03.015

    Article  CAS  Google Scholar 

  28. Chapuy B, Stewart C, Dunford AJ et al (2018) Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24:679–690. https://doi.org/10.1038/s41591-018-0016-8

    Article  CAS  Google Scholar 

  29. Schmitz R, Wright GW, Huang DW et al (2018) Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 378:1396–1407. https://doi.org/10.1056/NEJMoa1801445

    Article  CAS  Google Scholar 

  30. Lacy SE, Barrans SL, Beer PA et al (2020) Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report. Blood 135:1759–1771. https://doi.org/10.1182/blood.2019003535

    Article  CAS  Google Scholar 

  31. Autio M, Leivonen SK, Bruck O et al (2022) Clinical impact of immune cells and their spatial interactions in diffuse large B-cell lymphoma microenvironment. Clin Cancer Res 28:781–792. https://doi.org/10.1158/1078-0432.CCR-21-3140

    Article  CAS  Google Scholar 

  32. Steen CB, Luca BA, Esfahani MS et al (2021) The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell 39(1422–1437):e1410. https://doi.org/10.1016/j.ccell.2021.08.011

    Article  CAS  Google Scholar 

  33. Godfrey J, Tumuluru S, Bao R et al (2019) PD-L1 gene alterations identify a subset of diffuse large B-cell lymphoma harboring a T-cell-inflamed phenotype. Blood 133:2279–2290. https://doi.org/10.1182/blood-2018-10-879015

    Article  CAS  Google Scholar 

  34. Scott DW, King RL, Staiger AM et al (2018) High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood 131:2060–2064. https://doi.org/10.1182/blood-2017-12-820605

    Article  CAS  Google Scholar 

  35. King RL, Hsi ED, Chan WC et al (2022) Diagnostic approaches and future directions in Burkitt lymphoma and high-grade B-cell lymphoma. Virchows Arch. https://doi.org/10.1007/s00428-022-03404-6

    Article  Google Scholar 

  36. Gonzalez-Farre B, Ramis-Zaldivar JE, Salmeron-Villalobos J et al (2019) Burkitt-like lymphoma with 11q aberration: a germinal center-derived lymphoma genetically unrelated to Burkitt lymphoma. Haematologica 104:1822–1829. https://doi.org/10.3324/haematol.2018.207928

    Article  CAS  Google Scholar 

  37. Horn H, Kalmbach S, Wagener R et al (2021) A diagnostic approach to the identification of Burkitt-like lymphoma with 11q aberration in aggressive B-cell lymphomas. Am J Surg Pathol 45:356–364. https://doi.org/10.1097/PAS.0000000000001613

    Article  Google Scholar 

  38. Colomo L, Vazquez I, Papaleo N et al (2017) LMO2-negative expression predicts the presence of MYC translocations in aggressive B-cell lymphomas. Am J Surg Pathol 41:877–886. https://doi.org/10.1097/PAS.0000000000000839

    Article  Google Scholar 

  39. Wagener R, Seufert J, Raimondi F et al (2019) The mutational landscape of Burkitt-like lymphoma with 11q aberration is distinct from that of Burkitt lymphoma. Blood 133:962–966. https://doi.org/10.1182/blood-2018-07-864025

    Article  CAS  Google Scholar 

  40. Gebauer N, Witte HM, Merz H et al (2021) Aggressive B-cell lymphoma cases with 11q aberration patterns indicate a spectrum beyond Burkitt-like lymphoma. Blood Adv 5:5220–5225. https://doi.org/10.1182/bloodadvances.2021004635

    Article  CAS  Google Scholar 

  41. Tousseyn TA, King RL, Fend F et al (2022) Evolution in the definition and diagnosis of the Hodgkin lymphomas and related entities. Virchows Arch. https://doi.org/10.1007/s00428-022-03427-z

    Article  Google Scholar 

  42. Prakash S, Fountaine T, Raffeld M et al (2006) IgD positive L&H cells identify a unique subset of nodular lymphocyte predominant Hodgkin lymphoma. Am J Surg Pathol 30:585–592. https://doi.org/10.1097/01.pas.0000194741.87798.45

    Article  Google Scholar 

  43. Schuhmacher B, Bein J, Rausch T et al (2019) JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma. Haematologica 104:330–337. https://doi.org/10.3324/haematol.2018.203224

    Article  CAS  Google Scholar 

  44. Rosenwald A, Wright G, Leroy K et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862. https://doi.org/10.1084/jem.20031074

    Article  CAS  Google Scholar 

  45. Mottok A, Woolcock B, Chan FC et al (2015) Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression. Cell Rep 13:1418–1431. https://doi.org/10.1016/j.celrep.2015.10.008

    Article  CAS  Google Scholar 

  46. Steidl C, Shah SP, Woolcock BW et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381. https://doi.org/10.1038/nature09754

    Article  CAS  Google Scholar 

  47. Mottok A, Hung SS, Chavez EA et al (2019) Integrative genomic analysis identifies key pathogenic mechanisms in primary mediastinal large B-cell lymphoma. Blood 134:802–813. https://doi.org/10.1182/blood.2019001126

    Article  CAS  Google Scholar 

  48. Dunleavy K, Pittaluga S, Maeda LS et al (2013) Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med 368:1408–1416. https://doi.org/10.1056/NEJMoa1214561

    Article  CAS  Google Scholar 

  49. Mottok A, Wright G, Rosenwald A et al (2018) Molecular classification of primary mediastinal large B-cell lymphoma using routinely available tissue specimens. Blood 132:2401–2405. https://doi.org/10.1182/blood-2018-05-851154

    Article  CAS  Google Scholar 

  50. Sarkozy C, Hung SS, Chavez EA et al (2021) Mutational landscape of gray zone lymphoma. Blood 137:1765–1776. https://doi.org/10.1182/blood.2020007507

    Article  CAS  Google Scholar 

  51. Nakamura T, Tateishi K, Niwa T et al (2016) Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. Neuropathol Appl Neurobiol 42:279–290. https://doi.org/10.1111/nan.12259

    Article  CAS  Google Scholar 

  52. Kraan W, van Keimpema M, Horlings HM et al (2014) High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B-cell lymphoma. Leukemia 28:719–720. https://doi.org/10.1038/leu.2013.348

    Article  CAS  Google Scholar 

  53. Alame M, Pirel M, Costes-Martineau V et al (2020) Characterisation of tumour microenvironment and immune checkpoints in primary central nervous system diffuse large B cell lymphomas. Virchows Arch 476:891–902. https://doi.org/10.1007/s00428-019-02695-6

    Article  CAS  Google Scholar 

  54. Chapuy B, Roemer MG, Stewart C et al (2016) Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127:869–881. https://doi.org/10.1182/blood-2015-10-673236

    Article  CAS  Google Scholar 

  55. Nayak L, Iwamoto FM, LaCasce A et al (2017) PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129:3071–3073. https://doi.org/10.1182/blood-2017-01-764209

    Article  CAS  Google Scholar 

  56. Gonzalez-Farre B, Ramis-Zaldivvar J, Castrejon de Anta N, et al. (2022) Intravascular large B-cell lymphoma genomic profile is characterized by alterations in genes regulating NF- κB and immune checkpoint. American Journal of Surgical Pathology

  57. Schrader AMR, Jansen PM, Willemze R et al (2018) High prevalence of MYD88 and CD79B mutations in intravascular large B-cell lymphoma. Blood 131:2086–2089. https://doi.org/10.1182/blood-2017-12-822817

    Article  CAS  Google Scholar 

  58. Pham-Ledard A, Beylot-Barry M, Barbe C et al (2014) High frequency and clinical prognostic value of MYD88 L265P mutation in primary cutaneous diffuse large B-cell lymphoma, leg-type. JAMA Dermatol 150:1173–1179. https://doi.org/10.1001/jamadermatol.2014.821

    Article  Google Scholar 

  59. Taniguchi K, Takata K, Chuang SS et al (2016) Frequent MYD88 L265P and CD79B mutations in primary breast diffuse large B-cell lymphoma. Am J Surg Pathol 40:324–334. https://doi.org/10.1097/PAS.0000000000000592

    Article  Google Scholar 

  60. de Groen RAL, van Eijk R, Bohringer S et al (2021) Frequent mutated B2M, EZH2, IRF8, and TNFRSF14 in primary bone diffuse large B-cell lymphoma reflect a GCB phenotype. Blood Adv 5:3760–3775. https://doi.org/10.1182/bloodadvances.2021005215

    Article  CAS  Google Scholar 

  61. Sun J, Zhang J, Ling Q et al (2015) Primary diffuse large B-cell lymphoma of the ovary is of a germinal centre B-cell-like phenotype. Virchows Arch 466:93–100. https://doi.org/10.1007/s00428-014-1682-7

    Article  CAS  Google Scholar 

  62. Subik MK, Herr M, Hutchison RE et al (2014) A highly curable lymphoma occurs preferentially in the proximal tibia of young patients. Mod Pathol 27:1430–1437. https://doi.org/10.1038/modpathol.2014.51

    Article  Google Scholar 

  63. Alexanian S, Said J, Lones M et al (2013) KSHV/HHV8-negative effusion-based lymphoma, a distinct entity associated with fluid overload states. Am J Surg Pathol 37:241–249. https://doi.org/10.1097/PAS.0b013e318267fabc

    Article  Google Scholar 

  64. Gisriel SD, Yuan J, Braunberger RC et al (2022) Human herpesvirus 8-negative effusion-based large B-cell lymphoma: a distinct entity with unique clinicopathologic characteristics. Mod Pathol 35:1411–1422. https://doi.org/10.1038/s41379-022-01091-x

    Article  CAS  Google Scholar 

  65. Kaji D, Ota Y, Sato Y et al (2020) Primary human herpesvirus 8-negative effusion-based lymphoma: a large B-cell lymphoma with favorable prognosis. Blood Adv 4:4442–4450. https://doi.org/10.1182/bloodadvances.2020002293

    Article  CAS  Google Scholar 

  66. Kubota T, Sasaki Y, Shiozawa E et al (2018) Age and CD20 expression are significant prognostic factors in human herpes virus-8-negative effusion-based lymphoma. Am J Surg Pathol 42:1607–1616. https://doi.org/10.1097/PAS.0000000000001168

    Article  Google Scholar 

  67. Laurent C, Do C, Gascoyne RD et al (2009) Anaplastic lymphoma kinase-positive diffuse large B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol 27:4211–4216. https://doi.org/10.1200/JCO.2008.21.5020

    Article  Google Scholar 

  68. Valera A, Colomo L, Martinez A et al (2013) ALK-positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrangements. Mod Pathol 26:1329–1337. https://doi.org/10.1038/modpathol.2013.73

    Article  CAS  Google Scholar 

  69. Cerchietti L, Damm-Welk C, Vater I et al (2011) Inhibition of anaplastic lymphoma kinase (ALK) activity provides a therapeutic approach for CLTC-ALK-positive human diffuse large B cell lymphomas. Plos One 6:e18436. https://doi.org/10.1371/journal.pone.0018436

    Article  CAS  Google Scholar 

  70. GambacortiPasserini C, Farina F, Stasia A et al (2014) Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst 106:djt378. https://doi.org/10.1093/jnci/djt378

    Article  CAS  Google Scholar 

  71. Ramis-Zaldivar JE, Gonzalez-Farre B, Nicolae A et al (2021) MAPK and JAK-STAT pathways dysregulation in plasmablastic lymphoma. Haematologica 106:2682–2693. https://doi.org/10.3324/haematol.2020.271957

    Article  CAS  Google Scholar 

  72. Garcia-Reyero J, Martinez Magunacelaya N, Gonzalez de Villambrosia S et al (2021) Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica 106:1120–1128. https://doi.org/10.3324/haematol.2020.251579

    Article  CAS  Google Scholar 

  73. Chapman JR, Bouska AC, Zhang W et al (2021) EBV-positive HIV-associated diffuse large B cell lymphomas are characterized by JAK/STAT (STAT3) pathway mutations and unique clinicopathologic features. Br J Haematol 194:870–878. https://doi.org/10.1111/bjh.17708

    Article  CAS  Google Scholar 

  74. Chadburn A, Said J, Gratzinger D et al (2017) HHV8/KSHV-positive lymphoproliferative disorders and the spectrum of plasmablastic and plasma cell neoplasms: 2015 SH/EAHP workshop report—part 3. Am J Clin Pathol 147:171–187. https://doi.org/10.1093/ajcp/aqw218

    Article  Google Scholar 

  75. Song JY, Jaffe ES (2013) HHV-8-positive but EBV-negative primary effusion lymphoma. Blood 122:3712. https://doi.org/10.1182/blood-2013-07-515882

    Article  CAS  Google Scholar 

  76. Teruya-Feldstein J, Zauber P, Setsuda JE et al (1998) Expression of human herpesvirus-8 oncogene and cytokine homologues in an HIV-seronegative patient with multicentric Castleman’s disease and primary effusion lymphoma. Lab Invest 78:1637–1642

    CAS  Google Scholar 

  77. Cesarman E, Chadburn A, Rubinstein PG (2022) KSHV/HHV8-mediated hematologic diseases. Blood 139:1013–1025. https://doi.org/10.1182/blood.2020005470

    Article  CAS  Google Scholar 

  78. Ramaswami R, Lurain K, Polizzotto MN et al (2021) Characteristics and outcomes of KSHV-associated multicentric Castleman disease with or without other KSHV diseases. Blood Adv 5:1660–1670. https://doi.org/10.1182/bloodadvances.2020004058

    Article  CAS  Google Scholar 

  79. Morin RD, Arthur SE, Hodson DJ (2022) Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes? Br J Haematol 196:814–829. https://doi.org/10.1111/bjh.17811

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JYS drafted the manuscript. JYS, SD, LQM, SP, MAP, and EC edited the manuscript.

Corresponding author

Correspondence to Joo Y. Song.

Ethics declarations

Ethics approval and consent to participate

Compliance with all ethical standards was undertaken for this work. No research involving human or animals was performed. No informed consent was required.

Conflict of interest

JYS, SD, LQM, SP do not have any conflicts to disclose. MAP has the following disclosures: Millenium/Takeda: Advisory Board, Lecture Fees, Research Funding; Celgene: Advisory Board; Gilead: Advisory Board; Research funding; Jansen: Advisory Board; Lecture Fees; Nanostring: Advisory Board; Kyowa Kirin: Advisory Board; Kura: Research Funding. EC has been a consultant for Takeda, NanoString, and Illumina; has received honoraria from Janssen, EUSPharma, Takeda and Roche for speaking at educational activities; and is an inventor on a Lymphoma and Leukemia Molecular Profiling Project patent “Method for subtyping lymphoma subtypes by means of expression profiling” (PCT/US2014/64161) and on a bioinformatic pipeline “IgCaller” not related to this project.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.Y., Dirnhofer, S., Piris, M.A. et al. Diffuse large B-cell lymphomas, not otherwise specified, and emerging entities. Virchows Arch 482, 179–192 (2023). https://doi.org/10.1007/s00428-022-03466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03466-6

Keywords

Navigation