Skip to main content

Advertisement

Log in

The role of Ki-67 in Asian triple negative breast cancers: a novel combinatory panel approach

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The proliferation marker Ki-67 is frequently used to assess aggressiveness in the pathological evaluation of cancer, but its role remains uncertain in triple-negative breast cancer (TNBC). We aimed to quantify and localize Ki-67 expression in both epithelial and immune compartments in TNBC and investigate its association with clinicopathological parameters and survival outcomes. A total of 406 TNBC cases diagnosed between 2003 and 2015 at Singapore General Hospital were recruited. Using state-of-the-art, 7-colour multiplex immunofluorescence (mIF) tissue microarrays (TMAs) were stained to assess the abundance, density and spatial distribution of Ki-67-positive tumour cells and immune cells co-decorated with cytokeratin (CK) and leukocyte common antigen (CD45) respectively. Furthermore, MKI67 mRNA profiles were analysed using NanoString technology. In multivariate analysis adjusted for tumour size, histologic grade, age at diagnosis, and lymph node stage, a high Ki-67 labelling index (LI) > 0.3% was associated with improved disease-free survival (DFS; HR = 0.727; p = 0.027). High Ki-67-positive immune cell count per TMA was a favourable prognostic marker for both DFS (HR = 0.379; p = 0.00153) and overall survival (OS; HR = 0.473; p = 0.0482). The combination of high Ki-67 LI and high MKI67 expression was associated with improved DFS (HR = 0.239; p = 0.00639) and OS (HR = 0.213; p = 0.034). This study is among the first to highlight that Ki-67 is associated with favourable prognosis in an adjuvant setting in TNBC, and the mIF-based evaluation of Ki-67 expression on both tumour and immune cells represents a novel prognostic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALN:

axillary lymph node

CD45:

leukocyte common antigen

CK:

cytokeratin

CRC:

colorectal cancer

DFS:

disease-free survival

ER:

oestrogen receptor

HER2:

human epidermal growth factor receptor 2

LI:

labelling index

mIF:

multiplex immunofluorescence

OS:

overall survival

PR:

progesterone receptor

TIL:

tumour infiltrating lymphocytes

TMA:

tissue microarray

TNBC:

triple negative breast cancer

References

  1. Plasilova ML, Hayse B, Killelea BK, Horowitz NR, Chagpar AB, Lannin DR (2016) Features of triple-negative breast cancer: analysis of 38,813 cases from the national cancer database. Medicine 95(35):e4614–e4614. https://doi.org/10.1097/MD.0000000000004614

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thike AA, Cheok PY, Jara-Lazaro AR, Tan B, Tan P, Tan PH (2009) Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol 23:123–133. https://doi.org/10.1038/modpathol.2009.145

    Article  CAS  PubMed  Google Scholar 

  3. Thike AA, Yong-Zheng Chong L, Cheok PY, Li HH, Wai-Cheong Yip G, Huat Bay B, Tse GM-K, Iqbal J, Tan PH (2013) Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod Pathol 27:352–360. https://doi.org/10.1038/modpathol.2013.145

    Article  CAS  PubMed  Google Scholar 

  4. Cheng CL, Thike AA, Tan SYJ, Chua PJ, Bay BH, Tan PH (2015) Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat 151(1):99–111. https://doi.org/10.1007/s10549-015-3371-x

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto H, Koo S, Dent R, Tan PH, Iqbal J (2015) Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol 68(7):506–510. https://doi.org/10.1136/jclinpath-2015-202944

    Article  CAS  PubMed  Google Scholar 

  6. Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani B, Longy M, Raynal V, Pierron G, de Mascarel I, Taris C, Stoppa-Lyonnet D, Pierga J-Y, Salmon R, Sastre-Garau X, Fourquet A, Delattre O, de Cremoux P, Aurias A (2007) Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res 9(2):R24–R24. https://doi.org/10.1186/bcr1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gerdes J, Dallenbach F, Lennert K, Lemke H, Stein H (1984) Growth fractions in malignant non-Hodgkin’s lymphomas (NHL) as determined in situ with the monoclonal antibody Ki-67. Hematol Oncol 2(4):365–371

    Article  CAS  Google Scholar 

  8. Li LT, Jiang G, Chen Q, Zheng JN (2015) Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep 11(3):1566–1572. https://doi.org/10.3892/mmr.2014.2914

    Article  CAS  PubMed  Google Scholar 

  9. Munzone E, Botteri E, Sciandivasci A, Curigliano G, Nole F, Mastropasqua M, Rotmensz N, Colleoni M, Esposito A, Adamoli L, Luini A, Goldhirsch A, Viale G (2012) Prognostic value of Ki-67 labeling index in patients with node-negative, triple-negative breast cancer. Breast Cancer Res Treat 134(1):277–282. https://doi.org/10.1007/s10549-012-2040-6

    Article  PubMed  Google Scholar 

  10. Mohammed ZMA, McMillan DC, Elsberger B, Going JJ, Orange C, Mallon E, Doughty JC, Edwards J (2012) Comparison of visual and automated assessment of Ki-67 proliferative activity and their impact on outcome in primary operable invasive ductal breast cancer. Br J Cancer 106:383–388. https://doi.org/10.1038/bjc.2011.569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jonat W, Arnold N (2011) Is the Ki-67 labelling index ready for clinical use? Ann Oncol 22(3):500–502. https://doi.org/10.1093/annonc/mdq732

    Article  CAS  PubMed  Google Scholar 

  12. Pollack A, DeSilvio M, Khor LY, Li R, Al-Saleem TI, Hammond ME, Venkatesan V, Lawton CA, Roach M, Shipley WU, Hanks GE, Sandler HM (2004) Ki-67 staining is a strong predictor of distant metastasis and mortality for men with prostate cancer treated with radiotherapy plus androgen deprivation: radiation therapy oncology group trial 92–02. J Clin Oncol 22(11):2133–2140. https://doi.org/10.1200/JCO.2004.09.150

    Article  CAS  PubMed  Google Scholar 

  13. Zhao WY, Xu J, Wang M, Zhang ZZ, Tu L, Wang CJ, Lin TL, Shen YY, Liu Q, Cao H (2014) Prognostic value of Ki67 index in gastrointestinal stromal tumors. Int J Clin Exp Pathol 7(5):2298–2304

    PubMed  PubMed Central  Google Scholar 

  14. Yamaguchi T, Fujimori T, Tomita S, Ichikawa K, Mitomi H, Ohno K, Shida Y, Kato H (2013) Clinical validation of the gastrointestinal NET grading system: Ki67 index criteria of the WHO 2010 classification is appropriate to predict metastasis or recurrence. Diagn Pathol 8(1):65. https://doi.org/10.1186/1746-1596-8-65

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li P, Xiao ZT, Braciak TA, Ou QJ, Chen G, Oduncu FS (2016) Association between Ki67 index and clinicopathological features in colorectal cancer. Oncol Res Treat 39(11):696–702

    Article  CAS  Google Scholar 

  16. Fluge Ø, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S, Lilleng R, Eide TJ, Halvorsen TB, Tveit KM, Otte AP, Akslen LA, Dahl O (2009) Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer 101(8):1282–1289. https://doi.org/10.1038/sj.bjc.6605333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melling N, Kowitz CM, Simon R, Bokemeyer C, Terracciano L, Sauter G, Izbicki JR, Marx AH (2016) High Ki67 expression is an independent good prognostic marker in colorectal cancer. J Clin Pathol 69(3):209–214. https://doi.org/10.1136/jclinpath-2015-202985

    Article  CAS  PubMed  Google Scholar 

  18. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, McShane L, Paik S, Penault-Llorca F, Prudkin L, Regan M, Salter J, Sotiriou C, Smith IE, Viale G, Zujewski JA, Hayes DF (2011) Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. JNCI: J Natl Cancer Instit 103(22):1656–1664. https://doi.org/10.1093/jnci/djr393

    Article  CAS  Google Scholar 

  19. Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. JNCI: J Natl Cancer Instit 101(10):736–750. https://doi.org/10.1093/jnci/djp082

    Article  CAS  Google Scholar 

  20. de Azambuja E, Cardoso F, de Castro JG, Colozza M, Mano MS, Durbecq V, Sotiriou C, Larsimont D, Piccart-Gebhart MJ, Paesmans M (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients. Br J Cancer 96:1504–1513. https://doi.org/10.1038/sj.bjc.6603756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang W, Wu J, Zhang P, Fei X, Zong Y, Chen X, Huang O, He J-R, Chen W, Li Y, Shen K, Zhu L (2016) Prognostic and predictive value of Ki-67 in triple-negative breast cancer. Oncotarget 7(21):31079–31087. https://doi.org/10.18632/oncotarget.9075

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miyashita M, Ishida T, Ishida K, Tamaki K, Amari M, Watanabe M, Ohuchi N, Sasano H (2011) Histopathological subclassification of triple negative breast cancer using prognostic scoring system: five variables as candidates. Virchows Arch 458(1):65–72. https://doi.org/10.1007/s00428-010-1009-2

    Article  PubMed  Google Scholar 

  23. Constantinou C, Papadopoulos S, Karyda E, Alexopoulos A, Agnanti N, Batistatou A, Harisis H (2018) Expression and clinical significance of claudin-7, PDL-1, PTEN, c-Kit, c-Met, c-Myc, ALK, CK5/6, CK17, p53, EGFR, Ki67, p63 in triple-negative breast cancer – a single centre prospective observational study. In Vivo 32(2):303–311. https://doi.org/10.21873/invivo.11238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan Y, Yuan Y, Liu G, Wei Y (2017) P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients. PLoS One 12(2):e0172324. https://doi.org/10.1371/journal.pone.0172324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kashiwagi S, Yashiro M, Takashima T, Aomatsu N, Ikeda K, Ogawa Y, Ishikawa T, Hirakawa K (2011) Advantages of adjuvant chemotherapy for patients with triple-negative breast cancer at stage II: usefulness of prognostic markers E-cadherin and Ki67. Breast Cancer Res 13(6):R122. https://doi.org/10.1186/bcr3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niikura N, Masuda S, Kumaki N, Xiaoyan T, Terada M, Terao M, Iwamoto T, Oshitanai R, Morioka T, Tuda B, Okamura T, Saito Y, Suzuki Y, Tokuda Y (2014) Prognostic significance of the Ki67 scoring categories in breast cancer subgroups. Clin Breast Cancer 14(5):323–329.e323. https://doi.org/10.1016/j.clbc.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  27. Hao S, He ZX, Yu KD, Yang WT, Shao ZM (2016) New insights into the prognostic value of Ki-67 labeling index in patients with triple-negative breast cancer. Oncotarget 7(17):24824–24831. https://doi.org/10.18632/oncotarget.8531

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nishiyama Y, Nishimura R, Osako T, Okumura Y, Arima N (2012) Ki-67, p53, and clinical outcomes of patients with triple-negative breast cancer. J Clin Oncol 30(27_suppl):142–142. https://doi.org/10.1200/jco.2012.30.27_suppl.142

    Article  Google Scholar 

  29. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, Viale G, Zabaglo LA, Penault-Llorca F, Bartlett JM, Gown AM, Symmans WF, Piper T, Mehl E, Enos RA, Hayes DF, Dowsett M, Nielsen TO (2013) An international Ki67 reproducibility study. J Natl Cancer Inst 105(24):1897–1906. https://doi.org/10.1093/jnci/djt306

    Article  PubMed  PubMed Central  Google Scholar 

  30. Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, Colleoni M, Regan MM, Piccart-Gebhart M, Senn HJ, Thürlimann B, on behalf of the Panel Members of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast C, Panel Members of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast C, André F, Baselga J, Bergh J, Bonnefoi H, Brucker SY, Cardoso F, Carey L, Ciruelos E, Cuzick J, Denkert C, Di Leo A, Ejlertsen B, Francis P, Galimberti V, Garber J, Gulluoglu B, Goodwin P, Harbeck N, Hayes DF, Huang CS, Huober J, Khaled H, Jassem J, Jiang Z, Karlsson P, Morrow M, Orecchia R, Osborne KC, Pagani O, Partridge AH, Pritchard K, Ro J, EJT R, Sedlmayer F, Semiglazov V, Shao Z, Smith I, Toi M, Tutt A, Viale G, Watanabe T, Whelan TJ, Xu B (2017) De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol 28(8):1700–1712. https://doi.org/10.1093/annonc/mdx308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao Y, Qu Q, Zhang Y, Liu J, Chen X, Shen K (2014) The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. PLoS One 9(12):e115103. https://doi.org/10.1371/journal.pone.0115103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867. https://doi.org/10.1200/jco.2011.41.0902

    Article  CAS  PubMed  Google Scholar 

  33. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, Wolff AC, Wood WC, Davidson NE, Sledge GW, Sparano JA, Badve SS (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959–2966. https://doi.org/10.1200/jco.2013.55.0491

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jang N, Kwon HJ, Park MH, Kang SH, Bae YK (2018) Prognostic value of tumor-infiltrating lymphocyte density assessed using a standardized method based on molecular subtypes and adjuvant chemotherapy in invasive breast cancer. Ann Surg Oncol 25(4):937–946. https://doi.org/10.1245/s10434-017-6332-2

    Article  PubMed  Google Scholar 

  35. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550. https://doi.org/10.1093/annonc/mdu112

    Article  CAS  PubMed  Google Scholar 

  36. Tay TKY, Thike AA, Pathmanathan N, Jara-Lazaro AR, Iqbal J, Sng ASH, Ye HS, Lim JCT, Koh VCY, Tan JSY, Yeong JPS, Chow ZL, Li HH, Cheng CL, Tan PH (2018) Using computer assisted image analysis to determine the optimal Ki67 threshold for predicting outcome of invasive breast cancer. Oncotarget 9(14):11619–11630. https://doi.org/10.18632/oncotarget.24398

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lakhani S, Ellis I, Schnitt S, Tan P, Van de Vijver M (2012) World Health Organisation classification of tumors of the breast. Int Agency Res Cancer 4:142–147

    Google Scholar 

  38. Stack EC, Wang C, Roman KA, Hoyt CC (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58. https://doi.org/10.1016/j.ymeth.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  39. Abel EJ, Bauman TM, Weiker M, Shi F, Downs TM, Jarrard DF, Huang W (2014) Analysis and validation of tissue biomarkers for renal cell carcinoma using automated high-throughput evaluation of protein expression. Hum Pathol 45(5):1092–1099

    Article  CAS  Google Scholar 

  40. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21(9):998–1009

    Article  CAS  Google Scholar 

  41. Garnelo M, Tan A, Her Z, Yeong J, Lim CJ, Chen J, Lim KH, Weber A, Chow P, Chung A, Ooi LL, Toh HC, Heikenwalder M, Ng IO, Nardin A, Chen Q, Abastado JP, Chew V (2015) Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 15(310814):2015–310814

    Google Scholar 

  42. Yeong J, Thike AA, Lim JC, Lee B, Li H, Wong SC, Hue SS, Tan PH, Iqbal J (2017) Higher densities of Foxp3(+) regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat 163(1):21–35

    Article  CAS  Google Scholar 

  43. Garnelo M, Tan A, Her Z, Yeong J, Lim CJ, Chen J, Lim KH, Weber A, Chow P, Chung A, Ooi LL, Toh HC, Heikenwalder M, Ng IO, Nardin A, Chen Q, Abastado JP, Chew V (2017) Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 66(2):342–351

    Article  CAS  Google Scholar 

  44. Lim JCT, Yeong JPS, Lim CJ, Ong CCH, Chew VSP, Ahmed SS, Tan PH, Iqbal J (In Press) An automated staining protocol for 7-colour immunofluorescence of human tissue sections for diagnostic and prognostic use. J R Coll Pathol Aust

  45. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, Keely P (2016) COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res 18(1):35. https://doi.org/10.1186/s13058-016-0695-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, Church SE, Maby P, Vasaturo A, Angelova M, Fredriksen T, Mauger S, Waldner M, Berger A, Speicher MR, Pages F, Valge-Archer V, Galon J (2016) The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med 8(327):327ra26

    Article  Google Scholar 

  47. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP, Friedlander PA, Kluger HM, Kohrt HE, Lundgren L, Margolin K, Mitchell A, Olencki T, Pardoll DM, Reddy SA, Shantha EM, Sharfman WH, Sharon E, Shemanski LR, Shinohara MM, Sunshine JC, Taube JM, Thompson JA, Townson SM, Yearley JH, Topalian SL, Cheever MA (2016) PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 374(26):2542–2552. https://doi.org/10.1056/NEJMoa1603702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng Z, Jensen SM, Messenheimer DJ, Farhad M, Neuberger M, Bifulco CB, Fox BA (2016) Multispectral imaging of T and B cells in murine spleen and tumor. J Immunol 196(9):3943–3950. https://doi.org/10.4049/jimmunol.1502635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yeong J, Lim JCT, Lee B, Li H, Chia N, Ong CCH, Lye WK, Putti TC, Dent R, Lim E, Thike AA, Tan PH, Iqbal J (2018) High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front Immunol 9:1209. https://doi.org/10.3389/fimmu.2018.01209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeong J, Thike AA, Lim JC, Lee B, Li H, Wong SC, Hue SS, Tan PH, Iqbal J (2017) Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat 23(10):017–4161

    Google Scholar 

  51. Fiore C, Bailey D, Conlon N, Wu X, Martin N, Fiorentino M, Finn S, Fall K, Andersson SO, Andren O, Loda M, Flavin R (2012) Utility of multispectral imaging in automated quantitative scoring of immunohistochemistry. J Clin Pathol 65(6):496–502

    Article  Google Scholar 

  52. Feng Z, Bethmann D, Kappler M, Ballesteros-Merino C, Eckert A, Bell RB, Cheng A, Bui T, Leidner R, Urba WJ, Johnson K, Hoyt C, Bifulco CB, Bukur J, Wickenhauser C, Seliger B, Fox BA (2017) Multiparametric immune profiling in HPV– oral squamous cell cancer. JCI Insight 2(14). https://doi.org/10.1172/jci.insight.93652

  53. RStudio: integrated development environment for R (2015) RStudio, Inc, Boston

  54. R: a language and environment for statistical computing (2016). R Foundation for statistical computing, Vienna

  55. Walker A (2015) Openxlsx: read, write and edit XLSX files. R package version 3.0.0

  56. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-98141-3

    Book  Google Scholar 

  57. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40

  58. Wickham H (2016) tidyr: easily tidy data with ‘spread()’ and ‘gather()’ functions. R package version 0.6.0

  59. Wickham H (2016) stringr: simple, consistent wrappers for common string operations. R package version 1.1.0

  60. Wickham H, Francois R (2016) dplyr: a grammar of data manipulation. R package version 0.5.0

  61. Kassambara A, Kosinski M (2016) survminer: drawing survival curves using ‘ggplot2’. R package version 0.2.4

  62. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut S-J, Tsui DWY, Liu B, Dawson S-J, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Børresen-Dale A-L, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C (2016) The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun 7:11479. https://doi.org/10.1038/ncomms11479 https://www.nature.com/articles/ncomms11479#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. The Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412 https://www.nature.com/articles/nature11412#supplementary-information

    Article  CAS  Google Scholar 

  64. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling 6(269):pl1–pl1. https://doi.org/10.1126/scisignal.2004088. Accessed 16 Apr 2017

  65. Lausen B, Schumacher M (1992) Maximally selected rank statistics. Biometrics 48(1):73–85. https://doi.org/10.2307/2532740. Accessed 16 Apr 2017

  66. Reisenbichler ES, Horton D, Rasco M, Andea A, Hameed O (2012) Evaluation of dual immunohistochemistry and chromogenic in situ hybridization for HER2 on a single section. Am J Clin Pathol 137(1):102–110. https://doi.org/10.1309/AJCPLNHINN9O6YSF

    Article  PubMed  Google Scholar 

  67. Yaziji H, Goldstein LC, Barry TS et al (2004) Her-2 testing in breast cancer using parallel tissue-based methods. JAMA 291(16):1972–1977. https://doi.org/10.1001/jama.291.16.1972

    Article  CAS  PubMed  Google Scholar 

  68. Bilous M, Dowsett M, Hanna W, Isola J, Lebeau A, Moreno A, Penault-Llorca F, Rüschoff J, Tomasic G, van de Vijver M (2003) Current perspectives on HER2 testing: a review of national testing guidelines. Mod Pathol 16:173–182. https://doi.org/10.1097/01.MP.0000052102.90815.82

    Article  PubMed  Google Scholar 

  69. Couturier J, Vincent-Salomon A, Nicolas A, Beuzeboc P, Mouret E, Zafrani B, Sastre-Garau X (2000) Strong correlation between results of fluorescent in situ hybridization and immunohistochemistry for the assessment of the ERBB2 (HER-2/neu) gene status in breast carcinoma. Mod Pathol 13:1238–1243. https://doi.org/10.1038/modpathol.3880228

    Article  CAS  PubMed  Google Scholar 

  70. Kakar S, Puangsuvan N, Stevens JM, Serenas R, Mangan G, Sahai S, Mihalov ML (2000) HER-2/neu assessment in breast cancer by immunohistochemistry and fluorescence in situ hybridization: comparison of results and correlation with survival. Mol Diagn 5(3):199–207. https://doi.org/10.1007/BF03262077

    Article  CAS  PubMed  Google Scholar 

  71. Lebeau A, Deimling D, Kaltz C, Sendelhofert A, Iff A, Luthardt B, Untch M, Löhrs U (2001) HER-2/neu analysis in archival tissue samples of human breast cancer: comparison of immunohistochemistry and fluorescence in situ hybridization. J Clin Oncol 19(2):354–363. https://doi.org/10.1200/JCO.2001.19.2.354

    Article  CAS  PubMed  Google Scholar 

  72. Ridolfi RL, Jamehdor MR, Arber JM (2000) HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach. Mod Pathol 13:866–873. https://doi.org/10.1038/modpathol.3880154

    Article  CAS  PubMed  Google Scholar 

  73. Hanna WM, Kahn HJ, Pienkowska M, Blondal J, Seth A, Marks A (2001) Defining a test for HER-2/neu evaluation in breast cancer in the diagnostic setting. Mod Pathol 14:677–685. https://doi.org/10.1038/modpathol.3880372

    Article  CAS  PubMed  Google Scholar 

  74. Duchrow M, Ziemann T, Windhövel U, Bruch HP, Broll R (2003) Colorectal carcinomas with high MIB-1 labelling indices but low pKi67 mRNA levels correlate with better prognostic outcome. Histopathology 42(6):566–574. https://doi.org/10.1046/j.1365-2559.2003.01613.x

    Article  CAS  PubMed  Google Scholar 

  75. Bertucci F, Finetti P, Roche H, Le Doussal JM, Marisa L, Martin AL, Lacroix-Triki M, Blanc-Fournier C, Jacquemier J, Peyro-Saint-Paul H, Viens P, Sotiriou C, Birnbaum D, Penault-Llorca F (2013) Comparison of the prognostic value of genomic grade index, Ki67 expression and mitotic activity index in early node-positive breast cancer patients. Ann Oncol 24(3):625–632. https://doi.org/10.1093/annonc/mds510

    Article  CAS  PubMed  Google Scholar 

  76. Prihantono P, Hatta M, Binekada C, Sampepajung D, Haryasena H, Nelwan B, Asadul Islam A, Nilawati Usman A (2017) Ki-67 expression by immunohistochemistry and quantitative real-time polymerase chain reaction as predictor of clinical response to neoadjuvant chemotherapy in locally advanced breast cancer. J Oncol 2017:6209849–6209848. https://doi.org/10.1155/2017/6209849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petit T, Wilt M, Velten M, Millon R, Rodier JF, Borel C, Mors R, Haegele P, Eber M, Ghnassia JP (2004) Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer 40(2):205–211

    Article  CAS  Google Scholar 

  78. Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ (2007) Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer. BMC Cancer 7(1):203. https://doi.org/10.1186/1471-2407-7-203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pohl G, Rudas M, Taucher S, Stranzl T, Steger GG, Jakesz R, Pirker R, Filipits M (2003) Expression of cell cycle regulatory proteins in breast carcinomas before and after preoperative chemotherapy. Breast Cancer Res Treat 78(1):97–103

    Article  CAS  Google Scholar 

  80. Jones RL, Salter J, A’Hern R, Nerurkar A, Parton M, Reis-Filho JS, Smith IE, Dowsett M (2010) Relationship between oestrogen receptor status and proliferation in predicting response and long-term outcome to neoadjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 119(2):315–323. https://doi.org/10.1007/s10549-009-0329-x

    Article  CAS  PubMed  Google Scholar 

  81. Brown RW, Allred CD, Clark GM, Osborne CK, Hilsenbeck SG (1996) Prognostic value of Ki-67 compared to S-phase fraction in axillary node-negative breast cancer. Clin Cancer Res 2(3):585–592

    CAS  PubMed  Google Scholar 

  82. Weikel W, Brumm C, Wilkens C, Beck T, Knapstein PG (1995) Growth fractions (Ki-67) in primary breast cancers, with particular reference to node-negative tumors. Cancer Detect Prev 19(5):446–450

    CAS  PubMed  Google Scholar 

  83. Rhee J, Han S-W, Oh D-Y, Kim JH, Im S-A, Han W, Ae Park I, Noh D-Y, Bang Y-J, Kim T-Y (2008) The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer. BMC Cancer 8(1):307. https://doi.org/10.1186/1471-2407-8-307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109(9):1721–1728. https://doi.org/10.1002/cncr.22618

    Article  Google Scholar 

  85. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434. https://doi.org/10.1158/1078-0432.ccr-06-3045

    Article  PubMed  Google Scholar 

  86. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36):5652–5657. https://doi.org/10.1200/jco.2006.06.5664

    Article  PubMed  Google Scholar 

  87. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. https://doi.org/10.1001/jama.295.21.2492

    Article  CAS  PubMed  Google Scholar 

  88. Sirohi B, Arnedos M, Popat S, Ashley S, Nerurkar A, Walsh G, Johnston S, Smith IE (2008) Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol 19(11):1847–1852. https://doi.org/10.1093/annonc/mdn395

    Article  CAS  PubMed  Google Scholar 

  89. Uhm JE, Park YH, Yi SY, Cho EY, Choi YL, Lee SJ, Park MJ, Lee S-H, Jun HJ, Ahn JS, Kang WK, Park K, Im Y-H (2008) Treatment outcomes and clinicopathologic characteristics of triple-negative breast cancer patients who received platinum-containing chemotherapy. Int J Cancer 124(6):1457–1462. https://doi.org/10.1002/ijc.24090

    Article  CAS  Google Scholar 

  90. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334

    Article  CAS  Google Scholar 

  91. Dan-Dan Xiong X-GL, He R-Q, Pan D-H, Luo Y-H, Dang Y-W, Luo D-Z, Chen G, Peng Z-G, Gan T-Q (2017) Ki67/MIB-1 predicts better prognoses in colorectal cancer patients received both surgery and adjuvant radio-chemotherapy: a meta-analysis of 30 studies. Int J Clin Exp Med 10(2):1788–1804

    Google Scholar 

  92. Tseng L-M, Chiu J-H, Liu C-Y, Tsai Y-F, Wang Y-L, Yang C-W, Shyr Y-M (2017) A comparison of the molecular subtypes of triple-negative breast cancer among non-Asian and Taiwanese women. Breast Cancer Res Treat 163(2):241–254. https://doi.org/10.1007/s10549-017-4195-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anders CK, Deal AM, Miller CR, Khorram C, Meng H, Burrows E, Livasy C, Fritchie K, Ewend MG, Perou CM, Carey LA (2010) The prognostic contribution of clinical breast cancer subtype, age, and race among patients with breast cancer brain metastases. Cancer 117(8):1602–1611. https://doi.org/10.1002/cncr.25746

    Article  PubMed  PubMed Central  Google Scholar 

  94. Varga Z, Diebold J, Dommann-Scherrer C, Frick H, Kaup D, Noske A, Obermann E, Ohlschlegel C, Padberg B, Rakozy C, Sancho Oliver S, Schobinger-Clement S, Schreiber-Facklam H, Singer G, Tapia C, Wagner U, Mastropasqua MG, Viale G, Lehr HA (2012) How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PLoS One 7(5):e37379. https://doi.org/10.1371/journal.pone.0037379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Erdem O, Dursun A, Coskun U, Gunel N (2005) The prognostic value of p53 and c-erbB-2 expression, proliferative activity and angiogenesis in node-negative breast carcinoma. Tumori 91(1):46–52

    Article  CAS  Google Scholar 

  96. Gonzalez MA, Pinder SE, Callagy G, Vowler SL, Morris LS, Bird K, Bell JA, Laskey RA, Coleman N (2003) Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J Clin Oncol 21(23):4306–4313. https://doi.org/10.1200/jco.2003.04.121

    Article  CAS  PubMed  Google Scholar 

  97. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, McShane L, Paik S, Penault-Llorca F, Prudkin L, Regan M, Salter J, Sotiriou C, Smith IE, Viale G, Zujewski JA, Hayes DF (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103(22):1656–1664. https://doi.org/10.1093/jnci/djr393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stalhammar G, Fuentes Martinez N, Lippert M, Tobin NP, Molholm I, Kis L, Rosin G, Rantalainen M, Pedersen L, Bergh J, Grunkin M, Hartman J (2016) Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod Pathol 29(4):318–329. https://doi.org/10.1038/modpathol.2016.34

    Article  CAS  PubMed  Google Scholar 

  99. Teshome M, Hunt KK (2014) Neoadjuvant therapy in the treatment of breast cancer. Surg Oncol Clin N Am 23(3):505–523. https://doi.org/10.1016/j.soc.2014.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  100. Thompson AM, Moulder-Thompson SL (2012) Neoadjuvant treatment of breast cancer. Ann Oncol 23(suppl_10):x231–x236. https://doi.org/10.1093/annonc/mds324

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fasching PA, Heusinger K, Haeberle L, Niklos M, Hein A, Bayer CM, Rauh C, Schulz-Wendtland R, Bani MR, Schrauder M, Kahmann L, Lux MP, Strehl JD, Hartmann A, Dimmler A, Beckmann MW, Wachter DL (2011) Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 11:486. https://doi.org/10.1186/1471-2407-11-486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kobierzycki C, Pula B, Wojnar A, Podhorska-Okolow M, Dziegiel P (2012) Tissue microarray technique in evaluation of proliferative activity in invasive ductal breast cancer. Anticancer Res 32(3):773–777

    PubMed  Google Scholar 

  103. Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P, Maurer R, Spichtin H, Torhorst J, Popovska S, Simon R, Sauter G (2006) Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer 118(9):2190–2194. https://doi.org/10.1002/ijc.21581

    Article  CAS  PubMed  Google Scholar 

  104. Muftah AA, Aleskandarany MA, Al-Kaabi MM, Sonbul SN, Diez-Rodriguez M, Nolan CC, Caldas C, Ellis IO, Rakha EA, Green AR (2017) Ki67 expression in invasive breast cancer: the use of tissue microarrays compared with whole tissue sections. Breast Cancer Res Treat 164(2):341–348. https://doi.org/10.1007/s10549-017-4270-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Batistatou A, Televantou D, Bobos M, Eleftheraki AG, Kouvaras E, Chrisafi S, Koukoulis GK, Malamou-Mitsi V, Fountzilas G (2013) Evaluation of current prognostic and predictive markers in breast cancer: a validation study of tissue microarrays. Anticancer Res 33(5):2139–2145

    CAS  PubMed  Google Scholar 

  106. Thomson TA, Zhou C, Chu C, Knight B (2009) Tissue microarray for routine analysis of breast biomarkers in the clinical laboratory. Am J Clin Pathol 132(6):899–905. https://doi.org/10.1309/ajcpw37qgecdycdo

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article was funded by the A*STAR Biomedical Research Council, National Medical Research Council Stratified Medicine Programme Office (SMPO201302) awarded to Dr. PH Tan. Dr. Jabed Iqbal is a recipient of the Transition Award from the Singapore National Medical Research Council (NMRC/TA/0041/2015).

Author information

Authors and Affiliations

Authors

Contributions

PT and JY conceived and directed the study. PT and JY supervised the research. JL constructed TMAs, performed IHC, prepared samples for NanoString and collated data. BL performed bioinformatics analysis. AT, JY and TL performed immunohistochemical scoring, interpreted the data and performed biostatistical analysis. CO constructed TMAs, performed IHC and collated data. TP, AT, JI, RD and EL contributed to the scientific content of the study. AT, JY and TL drafted the manuscript with the assistance and final approval of all authors.

Corresponding author

Correspondence to Puay Hoon Tan.

Ethics declarations

Ethics approval and consent to participate

The SingHealth Centralized Institutional Review Board (CIRB) approved the authors’ request for waiver of informed consent based on ethical consideration (Ref: 2011/433/F). The SingHealth CIRB operates in accordance with the ICH/Singapore Guideline for Good Clinical Practices and with the applicable regulatory requirement(s).

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Virchows Archiv conforms to the ICMJE recommendation for qualification of authorship. The ICMJE recommends that authorship be based on the following 4 criteria:

• Substantial contributions to the conception or design of the work or the acquisition, analysis or interpretation of data for the work

• Drafting the work or revising it critically for important intellectual content

• Final approval of the version to be published

• Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Electronic supplementary material

Supplementary Figure 1

Kaplan-Meier analysis of disease-free survival, with previously reported Ki-67 LI cut-offs. (JPG 1116 kb)

Supplementary Figure 2

Kaplan-Meier analysis of overall survival, with previously reported Ki-67 LI cut-offs. (JPG 1126 kb)

Supplementary Figure 3

Kaplan-Meier analysis of (A) overall survival and (B) disease free survival outcomes in women with high compared with low total Ki-67 cell count (both cancer and immune cells) per high-power field in the cohort (JPG 477 kb)

Supplementary Table 1

Summary of studies investigating the prognostic value of Ki-67 in TNBC. (DOCX 15 kb)

Supplementary Table 2

Tumour subtypes represented in the study population. (DOCX 13 kb)

Supplementary Table 3

mIF antibody details (DOCX 13 kb)

Supplementary Table 4

Summary of variables and cut-offs presented (DOCX 13 kb)

Supplementary Table 5

Multivariate analysis of the prognostic value of total Ki-67 cell count (both cancer and immune cells) for DFS, with various additional cut-offs. (DOCX 13 kb)

Supplementary Table 6

Multivariate analysis of survival outcomes using total Ki-67 cell count (both cancer and immune cells). (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, A.S., Yeong, J.P.S., Lai, C.P.T. et al. The role of Ki-67 in Asian triple negative breast cancers: a novel combinatory panel approach. Virchows Arch 475, 709–725 (2019). https://doi.org/10.1007/s00428-019-02635-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02635-4

Keywords

Navigation