Skip to main content

Advertisement

Log in

An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Chondrosarcoma is a malignant cartilaginous tumor of the bone. Recently, mutations in isocitrate dehydrogenase-1 (IDH1) and isocitrate dehydrogenase-2 (IDH2) were identified in central chondrosarcomas. As chondrosarcomas are notoriously resistant to conventional treatment modalities, the need for model systems to screen new treatment options is high. We used two chondrosarcoma cell lines (CH2879 and SW1353) to generate a bioluminescent orthotopic chondrosarcoma mouse model. Cell lines were stably transduced with a lentiviral luciferase expression vector, and after clonal selection, luciferase-expressing clones were subcutaneously and orthotopically implanted in nude mice. Mice injected with CH2879 cells were treated with doxorubicin over a period of 6 weeks. Both cell lines resulted in tumor growth. CH2879 tumors were consistently larger than SW1353 tumors. No difference in size could be observed between subcutaneous and orthotopic tumors. Tumor growth could be monitored over time through assessment of luciferase activity, without harming the mice. Using this model, we show that doxorubicin does not have a significant effect on in vivo tumor growth. We describe an orthotopic chondrosarcoma mouse model that can be used to test new treatment strategies evolving from in vitro research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Evans HL, Ayala AG, Romsdahl MM (1977) Prognostic factors in chondrosarcoma of bone. A clinicopathologic analysis with emphasis on histologic grading. Cancer 818–831

  2. Gelderblom H, Hogendoorn PCW, Dijkstra SD, van Rijswijk CS, Krol AD, Taminiau AH, Bovee JVMG (2008) The clinical approach towards chondrosarcoma. Oncologist 3:320–329

    Article  Google Scholar 

  3. Jennes I, Pedrini E, Zuntini M, Mordenti M, Balkassmi S, Asteggiano CG, Casey B, Bakker B, Sangiorgi L, Wuyts W (2009) Multiple osteochondromas: mutation update and description of the multiple osteochondromas mutation database (MOdb). Hum Mutat 12:1620–1627

    Article  Google Scholar 

  4. Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner M (1995) Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome 11 and loss of heterozygosity for EXT-linked markers on chromosomes 11 and 8. Am J Hum Genet 1125–1131

  5. Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, Pollock R, O’Donnell P, Grigoriadis A, Diss T, Eskandarpour M, Presneau N, Hogendoorn PC, Futreal A, Tirabosco R, Flanagan AM (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 3:334–343

    Article  Google Scholar 

  6. Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F, McCarthy S, Fantin VR, Straley KS, Lobo S, Aston W, Green CL, Gale RE, Tirabosco R, Futreal A, Campbell P, Presneau N, Flanagan AM (2011) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43(12):1262–1265

    Article  CAS  PubMed  Google Scholar 

  7. Pansuriya TC, van Eijk R, D’Adamo P, van Ruler MA, Kuijjer ML, Oosting J, Cleton-Jansen AM, van Oosterwijk JG, Verbeke SL, Meijer D, van Wezel T, Nord KH, Sangiorgi L, Toker B, Liegl-Atzwanger B, San-Julian M, Sciot R, Limaye N, Kindblom LG, Daugaard S, Godfraind C, Boon LM, Vikkula M, Kurek KC, Szuhai K, French PJ, Bovée JVMG (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 12:1256–1261

    Article  Google Scholar 

  8. van Oosterwijk JG, de Jong D, van Ruler MA, Hogendoorn PC, Dijkstra PS, van Rijswijk CS, Machado IS, Llombart-Bosch A, Szuhai K, Bovée JVMG (2012) Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone. BMC Cancer 375:375

    Article  Google Scholar 

  9. Calabuig-Farinas S, Benso RG, Szuhai K, Machado I, Lopez-Guerrero JA, de Jong D, Peydro A, Miguel TS, Navarro L, Pellin A, Llombart-Bosch A (2012) Characterization of a new human cell line (CH-3573) derived from a grade II chondrosarcoma with matrix production. Pathol Oncol Res 18(4):793–802

    Article  CAS  PubMed  Google Scholar 

  10. Gil-Benso R, Lopez-Gines C, Lopez-Guerrero JA, Carda C, Callaghan RC, Navarro S, Ferrer J, Pellin A, Llombart-Bosch A (2003) Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin. Lab Investi 6:877–887

    Article  Google Scholar 

  11. Scully SP, Berend KR, Toth A, Qi WN, Qi Z, Block JA (2000) Marshall Urist Award. Interstitial collagenase gene expression correlates with in vitro invasion in human chondrosarcoma. Clin Orthop Relat Res 376:291–303

    Article  PubMed  Google Scholar 

  12. Kunisada T, Miyazaki M, Mihara K, Gao C, Kawai A, Inoue H, Namba M (1998) A new human chondrosarcoma cell line (OUMS-27) that maintains chondrocytic differentiation. Int J Cancer 6:854–859

    Article  Google Scholar 

  13. Monderer D, Luseau A, Bellec A, David E, Ponsolle S, Saiagh S, Bercegeay S, Piloquet P, Denis MG, Lode L, Redini F, Biger M, Heymann D, Heymann MF, Le BR, Gouin F, Blanchard F (2013) New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance. Lab Investig 93:2013.101

    Article  Google Scholar 

  14. Kudo N, Ogose A, Hotta T, Kawashima H, Gu W, Umezu H, Toyama T, Endo N (2007) Establishment of novel human dedifferentiated chondrosarcoma cell line with osteoblastic differentiation. Virchows Arch 3:691–699

    Article  Google Scholar 

  15. Clark JC, Dass CR, Choong PF (2009) Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg 5:327–336

    Article  Google Scholar 

  16. Stevens JW, Patil SR, Jordan DK, Kimura JH, Morcuende JA (2005) Cytogenetics of swarm rat chondrosarcoma. Iowa Orthop J 135–140

  17. Clark JC, Akiyama T, Dass CR, Choong PF (2010) New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis. Cancer Cell Int 28. doi:10.1186/1475-2867-10-20

  18. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z (2005) Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 22:5055–5068

    Article  Google Scholar 

  19. Zak BM, Schuksz M, Koyama E, Mundy C, Wells DE, Yamaguchi Y, Pacifici M, Esko JD (2011) Compound heterozygous loss of Ext1 and Ext2 is sufficient for formation of multiple exostoses in mouse ribs and long bones. Bone 5:979–987

    Article  Google Scholar 

  20. Matsumoto K, Irie F, Mackem S, Yamaguchi Y (2010) A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci U S A 24:10932–10937

    Article  Google Scholar 

  21. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, Cairns RA, McCracken S, Wakeham A, Haight J, Ten AY, Snow B, Ueda T, Inoue S, Yamamoto K, Ko M, Rao A, Yen KE, Su SM, Mak TW (2012) D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 18:2038–2049

    Article  Google Scholar 

  22. Zhang YX, van Oosterwijk JG, Sicinska E, Moss S, Remillard SP, van Wezel T, Buhnemann C, Hassan AB, Demetri GD, Bovee JVMG, Wagner AJ (2013) Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res 14:3796–3807

    Article  Google Scholar 

  23. Cleton-Jansen AM, van Beerendonk HM, Baelde HJ, Bovée JVMG, Karperien M, Hogendoorn PCW (2005) Estrogen signaling is active in cartilaginous tumors: implications for antiestrogen therapy as treatment option of metastasized or irresectable chondrosarcoma. Clin Cancer Res 22:8028–8035

    Article  Google Scholar 

  24. van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A, Thalmann GN, Papapoulos SE, Cecchini MG (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 17:7682–7690

    Google Scholar 

  25. Lechler P, Renkawitz T, Campean V, Balakrishnan S, Tingart M, Grifka J, Schaumburger J (2011) The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro. BMC Cancer 120. doi:10.1186/1471-2407-11-120

  26. van Oosterwijk JG, Herpers B, Meijer D, Briaire-de Bruijn IH, Cleton-Jansen AM, Gelderblom H, van de Water B, Bovée JVMG (2012) Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance. Ann Oncol 6:1617–1626

    Article  Google Scholar 

  27. van Oosterwijk JG, Meijer D, van Ruler MA, van den Akker BE, Oosting J, Krenacs T, Picci P, Flanagan AM, Liegl-Atzwanger B, Leithner A, Athanasou N, Daugaard S, Hogendoorn PCW, Bovee JVMG (2013) Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFbeta as potential targets. Am J Pathol 4:1347–1356

    Article  Google Scholar 

  28. Kim DW, Kim KO, Shin MJ, Ha JH, Seo SW, Yang J, Lee FY (2009) siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells. Mol Cancer 28

  29. Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, Lee SE, Block JA, Hei TK, Lee FY (2007) Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chondrosarcoma cells. J Orthop Res 6:820–828

    Article  Google Scholar 

  30. Boeuf S, Bovee JVMG, Lehner B, Hogendoorn PCW, Richter W (2010) Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours. Histopathology 56(5):641–651

    Article  PubMed  Google Scholar 

  31. Chen C, Zhou H, Wei F, Jiang L, Liu X, Liu Z, Ma Q (2011) Increased levels of hypoxia-inducible factor-1alpha are associated with Bcl-xL expression, tumor apoptosis, and clinical outcome in chondrosarcoma. J Orthop Res 29(1):143–151

  32. Schaap FG, French PJ, Bovee JVMG (2013) Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 in tumors. Adv Anat Pathol 1:32–38

    Article  Google Scholar 

  33. Schrage YM, Briaire-de Bruijn IH, de Miranda NFCC, van Oosterwijk JG, Taminiau AHM, van Wezel T, Hogendoorn PCW, Bovée JVMG (2009) Kinome profiling of chondrosarcoma reveals Src-pathway activity and dasatinib as option for treatment. Cancer Res 15:6216–6222

    Article  Google Scholar 

  34. Bovee JVMG, Cleton-Jansen AM, Taminiau AHM, Hogendoorn PCW (2005) Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 8:599–607

    Article  Google Scholar 

  35. van Oosterwijk JG, van Ruler MA, Briaire-de Bruijn IH, Herpers B, Gelderblom H, van de Water B, Bovee JVMG (2013) Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer 5:1214–1222

    Article  Google Scholar 

  36. Galoian K, Temple HT, Galoyan A (2012) mTORC1 inhibition and ECM-cell adhesion-independent drug resistance via PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol 3:885–890

    Article  Google Scholar 

  37. Perez J, Decouvelaere AV, Pointecouteau T, Pissaloux D, Michot JP, Besse A, Blay JY, Dutour A (2012) Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PLoS ONE 6:e32458

    Article  Google Scholar 

  38. Bernstein-Molho R, Kollender Y, Issakov J, Bickels J, Dadia S, Flusser G, Meller I, Sagi-Eisenberg R, Merimsky O (2012) Clinical activity of mTOR inhibition in combination with cyclophosphamide in the treatment of recurrent unresectable chondrosarcomas. Cancer Chemother Pharmacol 6:855–860

    Article  Google Scholar 

  39. Tarpey PS, Behjati S, Cooke SL, Van LP, Wedge DC, Pillay N, Marshall J, O’Meara S, Davies H, Nik-Zainal S, Beare D, Butler A, Gamble J, Hardy C, Hinton J, Jia MM, Jayakumar A, Jones D, Latimer C, Maddison M, Martin S, McLaren S, Menzies A, Mudie L, Raine K, Teague JW, Tubio JM, Halai D, Tirabosco R, Amary F, Campbell PJ, Stratton MR, Flanagan AM, Futreal PA (2013) Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet 8:923–926

    Article  Google Scholar 

  40. Hogendoorn PCW, Bovée JVMG, Nielsen GP (2013) Chondrosarcoma (grades I-III), including primary and secondary variants and periosteal chondrosarcoma pp 264–268

  41. Tiet TD, Hopyan S, Nadesan P, Gokgoz N, Poon R, Lin AC, Yan T, Andrulis IL, Alman BA, Wunder JS (2006) Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 1:321–330

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Inge H. Briaire-de Bruijn, Maayke A.J.H. van Ruler, Pauline Weijers-Koster, and René Zwartbol for their technical assistance and Ben van der Geest and Fred de Boer for their assistance with the mouse experiments and caretaking. The authors are especially thankful to Dr. Erik Kaijsel for providing the vectors, Prof. Dr. Pancras C.W. Hogendoorn for the fruitful discussions, and Prof. Dr. Clemens W.G.M. Löwik for providing access to his facilities. The authors also thank the Dutch Cancer Society (UL2007-3815; UL2010-4873: J.G.v.O., J.R.M.P., D.M., M.K., and J.V.M.G.B.) for the financial support.

Conflict of interest

The authors have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith V. M. G. Bovée.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

Injection methods. 12 mice were subcutaneously injected and 33 orthotopically, of which 7 were treated with doxorubicin. (GIF 46 kb)

High resolution image (TIFF 1249 kb)

Supplemental Figure S2

Tumor growth in the medullary cavity. Growth of chondrosarcoma tumor cells was confirmed to occur in the medullary cavity. Large tumors showed disappearance of the tibial bone and outgrowth of the tumors into the muscle tissue surrounding the tibiae (A, B: 1.73× magnification, Ai, Bi: 40× magnification showing tumor cells). (GIF 234 kb)

High resolution image (TIFF 1031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Oosterwijk, J.G., Plass, J.R.M., Meijer, D. et al. An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing. Virchows Arch 466, 101–109 (2015). https://doi.org/10.1007/s00428-014-1670-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1670-y

Keywords

Navigation