Skip to main content

Advertisement

Log in

The leiomyomatous stroma in renal cell carcinomas is polyclonal and not part of the neoplastic process

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Some renal epithelial neoplasms, such as renal angiomyoadenomatous tumor, clear cell papillary renal cell carcinoma and renal cell carcinoma with smooth muscle stroma, contain a variably prominent smooth muscle stromal component. Whether or not this leiomyomatous stroma is part of the neoplastic proliferation has not been firmly established. We studied the clonality status of 14 renal cell carcinomas with a prominent smooth muscle stromal component (four renal angiomyoadenomatous tumors/clear cell papillary carcinomas, five clear cell carcinomas, two papillary carcinomas, and three renal cell carcinomas with smooth muscle rich stroma) using the human androgen receptor assay (HUMARA). We found the leiomyomatous stromal component in all analyzable (8/14) cases to be polyclonal and therefore reactive rather than neoplastic. Based on morphological observations, we propose that the non-neoplastic leiomyomatous stromal component is likely derived from smooth muscle cells of large caliber veins located at the peripheral capsular region or within the collagenous septae of the tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Aydin H, Chen L, Cheng L, Vaziri S, He H, Ganapathi R, Delahunt B, Magi-Galluzzi C, Zhou M (2010) Clear cell tubulopapillary renal cell carcinoma: a study of 36 distinctive low-grade epithelial tumors of the kidney. Am J Surg Pathol 34:1608–1621

  3. Canzonieri V, Volpe R, Gloghini A, Carbone A, Merlo A (1993) Mixed renal tumor with carcinomatous and fibroleiomyomatous components, associated with angiomyolipoma in the same kidney. Pathol Res Pract 189:951–956

    Article  CAS  PubMed  Google Scholar 

  4. Iczkowski KA, Shanks JH, Burdge AH, Cheng L (2013) Renal cell carcinoma with clear cells, smooth muscle stroma, and negative for 3p deletion: a variant of renal angiomyoadenomatous tumour? A case report. Histopathology 62:522–524

  5. Karbowniczek M, Yu J, Henske EP (2003) Renal angiomyolipomas from patients with sporadic lymphangiomyomatosis contain both neoplastic and non-neoplastic vascular structures. Am J Pathol 162:491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kuhn E, De Anda J, Manoni S, Netto G, Rosai J (2006) Renal cell carcinoma associated with prominent angioleiomyoma-like proliferation: report of 5 cases and review of the literature. Am J Surg Pathol 30:1372–1381

    Article  PubMed  Google Scholar 

  7. Martignoni G, Brunelli M, Segala D, Gobbo S, Borze I, Atanesyan L, Savola S, Barzon L, Masi G, Tardanico R, Zhang S, Eble JN, Chilosi M, Bohling T, Cheng L, Delahunt B, Knuutila S (2014) Renal cell carcinoma with smooth muscle stroma lacks chromosome 3p and VHL alterations. Mod Pathol, in press

  8. Michal M, Hes O, Nemcova J, Sima R, Kuroda N, Bulimbasic S, Franco M, Sakaida N, Danis D, Kazakov DV, Ohe C, Hora M (2009) Renal angiomyoadenomatous tumor: morphologic, immunohistochemical, and molecular genetic study of a distinct entity. Virchows Arch 454:89–99

    Article  CAS  PubMed  Google Scholar 

  9. Nanaev AK, Shirinsky VP, Birukov KG (1991) Immunofluorescent study of heterogeneity in smooth muscle cells of human fetal vessels using antibodies to myosin, desmin, and vimentin. Cell Tissue Res 266:535–540

    Article  CAS  PubMed  Google Scholar 

  10. Osborn M, Caselitz J, Puschel K, Weber K (1987) Intermediate filament expression in human vascular smooth muscle and in arteriosclerotic plaques. Virchows Arch A Pathol Anat Histopathol 411:449–458

    Article  CAS  PubMed  Google Scholar 

  11. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    CAS  PubMed  Google Scholar 

  12. Shannon BA, Cohen RJ, Segal A, Baker EG, Murch AR (2009) Clear cell renal cell carcinoma with smooth muscle stroma. Hum Pathol 40:425–429. doi:10.1016/j.humpath.2008.05.021

    Article  PubMed  Google Scholar 

  13. Schmid E, Osborn M, Rungger-Brandle E, Gabbiani G, Weber K, Franke WW (1982) Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp Cell Res 137:329–340

    Article  CAS  PubMed  Google Scholar 

  14. Skalli O, Bloom WS, Ropraz P, Azzarone B, Gabbiani G (1986) Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J Submicrosc Cytol 18:481–493

    CAS  PubMed  Google Scholar 

  15. Smith NR, Baker D, Farren M, Pommier A, Swann R, Wang X, Mistry S, McDaid K, Kendrew J, Womack C, Wedge SR, Barry ST Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res 19:6943–6956

  16. Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, Hes O, Moch H, Montironi R, Tickoo SK, Zhou M, Argani P (2013) The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol 37:1469–1489

  17. Thyberg J, Hedin U, Sjolund M, Palmberg L, Bottger BA (1990) Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 10:966–990

    Article  CAS  PubMed  Google Scholar 

  18. Travo P, Weber K, Osborn M (1982) Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture. Exp Cell Res 139:87–94

    Article  CAS  PubMed  Google Scholar 

  19. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Charles University Research Fund (project number P36) and by Charles University Grant SVV 260051/2014.

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Hes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersson, F., Branzovsky, J., Martinek, P. et al. The leiomyomatous stroma in renal cell carcinomas is polyclonal and not part of the neoplastic process. Virchows Arch 465, 89–96 (2014). https://doi.org/10.1007/s00428-014-1591-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1591-9

Keywords

Navigation