Skip to main content

Advertisement

Log in

High stability of microRNAs in tissue samples of compromised quality

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Degradation of tissue samples limits performing RNA-based molecular studies, but little is known about the potential usefulness of samples of compromised quality for studies focused on miRNAs. In this work we analyze a series of cryopreserved tissue samples (n = 14), frozen samples that underwent a severe thawing process (n = 10), and their paired formalin-fixed paraffin-embedded (FFPE) tissue samples (n = 24) from patients with breast cancer obtained during primary surgical resection and collected in 2011. Quality and integrity analyses of the total and small fraction of RNA were carried out. Recovery of specific RNA molecules (miRNAs hsa-miR-21, hsa-miR-125b, and hsa-miR-191; snoRNA RNU6B; and mRNAs GAPDH and HPRT1) was also analyzed by quantitative RT-PCR. Our results suggest that visualisation of the small RNA electrophoretic profiles obtained using the Agilent 2100 bioanalyzer makes it possible to differentiate between the three groups of samples (optimally frozen, thawed, and FFPE). We demonstrate that specific miRNA molecules can be similarly recovered from different tissue sample sources, which supports their high degree of stability. We conclude that miRNAs are robustly detected irrespective of the quality of the tissue sample. In this regard, a word of caution should be raised before degraded samples are discarded: although prior quality assessment of the biological material to be analyzed is recommended, our work demonstrates that degraded tissue samples are also suitable for miRNA studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cambon-Thomsen A, Ducournau P, Gourraud PA, Pontille D (2003) Biobanks for genomics and genomics for biobanks. Comp Funct Genomics 4(6):628–634. doi:10.1002/cfg.333

    Article  PubMed  CAS  Google Scholar 

  2. Bresters D, Schipper ME, Reesink HW, Boeser-Nunnink BD, Cuypers HT (1994) The duration of fixation influences the yield of HCV cDNA-PCR products from formalin-fixed, paraffin-embedded liver tissue. J Virol Methods 48(2–3):267–272

    Article  PubMed  CAS  Google Scholar 

  3. Macabeo-Ong M, Ginzinger DG, Dekker N, McMillan A, Regezi JA, Wong DT, Jordan RC (2002) Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Mod Pathol 15(9):979–987. doi:10.1097/01.MP.0000026054.62220.FC

    Article  PubMed  Google Scholar 

  4. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, Esteban JM, Baker JB (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164(1):35–42. doi:10.1016/S0002-9440(10)63093-3

    Article  PubMed  CAS  Google Scholar 

  5. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi:10.1038/nrg1379nrg1379

    Article  PubMed  CAS  Google Scholar 

  6. Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, McCready D, Wong D, Gerster K, Waldron L, Jurisica I, Penn LZ, Liu FF (2009) Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest 89(5):597–606. doi:10.1038/labinvest.2009.12

    Article  PubMed  CAS  Google Scholar 

  7. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161. doi:10.1038/nmeth717

    Article  PubMed  CAS  Google Scholar 

  8. Esquela-Kerscher A, Slack FJ (2006) Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269. doi:10.1038/nrc1840

    Article  PubMed  CAS  Google Scholar 

  9. O'Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12(2):201. doi:10.1186/bcr2484

    Article  PubMed  Google Scholar 

  10. Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu CG, Croce CM, Condorelli G (2008) MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27(27):3845–3855. doi:10.1038/onc.2008.6

    Article  PubMed  CAS  Google Scholar 

  11. Lawrie CH (2008) MicroRNA expression in lymphoid malignancies: new hope for diagnosis and therapy? J Cell Mol Med 12(5A):1432–1444. doi:10.1111/j.1582-4934.2008.00399.x

    Article  PubMed  CAS  Google Scholar 

  12. Sandoval J, Peiro-Chova L, Pallardo FV, Garcia-Gimenez JL (2013) Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev Mol Diagn 13(5):457–471. doi:10.1586/erm.13.37

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, Guenther SM, O'Leary JJ, Sheils O (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 7:36. doi:10.1186/1472-6750-7-36

    Article  PubMed  Google Scholar 

  14. Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10(3):203–211. doi:10.2353/jmoldx.2008.070153

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H (2008) An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagn 10(6):513–519. doi:10.2353/jmoldx.2008.080077

    Article  PubMed  Google Scholar 

  16. Lovendorf MB, Zibert JR, Hagedorn PH, Glue C, Odum N, Ropke MA, Skov L (2012) Comparison of microRNA expression using different preservation methods of matched psoriatic skin samples. Exp Dermatol 21(4):299–301. doi:10.1111/j.1600-0625.2012.01445.x

    Article  PubMed  Google Scholar 

  17. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24. doi:10.1186/1476-4598-5-24

    Article  PubMed  Google Scholar 

  18. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261. doi:10.1073/pnas.0510565103

    Article  PubMed  CAS  Google Scholar 

  19. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803. doi:10.1038/sj.onc.1210083

    Article  PubMed  CAS  Google Scholar 

  20. Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Betts G, Homer J, West C, Ragoussis J, Harris AL (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer 104(7):1168–1177. doi:10.1038/sj.bjc.6606076

    Article  PubMed  CAS  Google Scholar 

  21. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85(1):154–159. doi:10.1038/labinvest.3700208

    Article  PubMed  Google Scholar 

  22. Klopfleisch R, Weiss AT, Gruber AD (2011) Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol 26(6):797–810

    PubMed  CAS  Google Scholar 

  23. Ma Y, Dai H, Kong X (2012) Impact of warm ischemia on gene expression analysis in surgically removed biosamples. Anal Biochem 423(2):229–235. doi:10.1016/j.ab.2012.02.003

    Article  PubMed  CAS  Google Scholar 

  24. von Smolinski D, Leverkoehne I, von Samson-Himmelstjerna G, Gruber AD (2005) Impact of formalin-fixation and paraffin-embedding on the ratio between mRNA copy numbers of differently expressed genes. Histochem Cell Biol 124(2):177–188. doi:10.1007/s00418-005-0013-0

    Article  CAS  Google Scholar 

  25. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161(6):1961–1971. doi:10.1016/S0002-9440(10)64472-0

    Article  PubMed  CAS  Google Scholar 

  26. Abrahamsen HN, Steiniche T, Nexo E, Hamilton-Dutoit SJ, Sorensen BS (2003) Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients. J Mol Diagn 5(1):34–41. doi:10.1016/S1525-1578(10)60449-7

    Article  PubMed  CAS  Google Scholar 

  27. Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 27(22):4436–4443

    Article  PubMed  CAS  Google Scholar 

  28. Korga A, Wilkolaska K, Korobowicz E (2007) Difficulties in using archival paraffin-embedded tissues for RNA expression analysis. Postepy Hig Med Dosw (Online) 61:151–155

    Google Scholar 

  29. Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl MW (2010) mRNA and microRNA quality control for RT-qPCR analysis. Methods 50(4):237–243. doi:10.1016/j.ymeth.2010.01.010

    Article  PubMed  CAS  Google Scholar 

  30. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107(7):823–826

    Article  PubMed  CAS  Google Scholar 

  31. Dijkstra JR, Mekenkamp LJ, Teerenstra S, De Krijger I, Nagtegaal ID (2012) MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls. J Cell Mol Med 16(4):683–690. doi:10.1111/j.1582-4934.2011.01467.x

    Article  PubMed  CAS  Google Scholar 

  32. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13(10):1668–1674. doi:10.1261/rna.642907

    Article  PubMed  CAS  Google Scholar 

  33. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518. doi:10.1073/pnas.0804549105

    Article  PubMed  CAS  Google Scholar 

  34. Oliveira IB, Ramos DR, Lopes KL, Souza RM, Heimann JC, Furukawa LN (2012) Isolated total RNA and protein are preserved after thawing for more than twenty-four hours. Clinics (Sao Paulo) 67(3):255–259

    Article  Google Scholar 

  35. Thasler WE, Thasler RM, Schelcher C, Jauch KW (2013) Biobanking for research in surgery: are surgeons in charge for advancing translational research or mere assistants in biomaterial and data preservation? Langenbecks Arch Surg 398(4):487–499. doi:10.1007/s00423-013-1060-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by Fundación LeCado-Proyecto Flor de Vida. LPC is funded by the National Health Institute Carlos III FEDER (RD09/0076/00132). MPC is funded by the Generalitat Valenciana Conselleria d'Educació VALi + d program (ACIF/2011/207). GR is funded by the Spanish Ministry of Health (CP08_00069). We want to particularly acknowledge the patients for their participation and INCLIVA Biobank, integrated in the Spanish Hospital Biobanks Network (ReTBioH) and supported by the National Health Institute Carlos III/FEDER and Ministerio de Economía y Competitividad (grant number: RD09/0076/00132). We also thank the Unit for Multigenic Analysis from the Central Unit for Medical Research (UCIM/INCLIVA) for total RNA analysis and the Genomic Unit from Central Service for the Support to Experimental Research (SCSIE) for small RNA analysis.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Ribas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peiró-Chova, L., Peña-Chilet, M., López-Guerrero, J.A. et al. High stability of microRNAs in tissue samples of compromised quality. Virchows Arch 463, 765–774 (2013). https://doi.org/10.1007/s00428-013-1485-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-013-1485-2

Keywords

Navigation