Skip to main content

Advertisement

Log in

DNA methylation profile during multistage progression of pulmonary adenocarcinomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Multiple genetic and epigenetic alterations are known to be involved in the carcinogenesis of peripheral pulmonary adenocarcinoma (ADC). However, epigenetic abnormalities have not been extensively investigated in the following multistage progression sequence: atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), to invasive ADC. To determine the potential role of promoter methylation during ADC development of the lung, we examined methylation status in 20 normal, 20 AAH, 30 AIS, and 60 ADC lung tissues and compared methylation status among the lesions. The MethyLight assay was used to determine the methylation status of 18 CpG island loci, which were hypermethylated in ADC compared to noncancerous lung tissues. The mean number of methylated CpG island loci was significantly higher in ADC than in AAH and AIS, (p < 0.003 between ADC and AAH, p < 0.005 between ADC and AIS). Aberrant methylation of HOXA1, TMEFF2, and RARB was frequently observed in preinvasive lesions, including AAH and AIS. Furthermore, methylation of PENK, BCL2, RUNX3, DLEC1, MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was significantly more frequent in invasive ADC than AAH or AIS. Our results indicate that epigenetic alterations are involved in the multistep progression of pulmonary ADC development, and aberrant CpG island methylation accumulates during multistep carcinogenesis. In addition, aberrant methylation of HOXA1, TMEFF2, and RARB occurred in preinvasive lesions, which indicates that epigenetic alterations of these genes are involved in the early stages of pulmonary ADC development. In contrast, hypermethylation of PENK, BCL2, RUNX3, DLEC1, MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was more frequent in invasive ADC than in preinvasive lesions, which indicates that methylation of these genes occurs later during tumor invasion in the AAH–AIS–ADC sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mori M, Rao SK, Popper HH, Cagle PT, Fraire AE (2001) Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol 14:72–84

    Article  PubMed  CAS  Google Scholar 

  2. Soh J, Toyooka S, Ichihara S, Asano H, Kobayashi N, Suehisa H, Otani H, Yamamoto H, Ichimura K, Kiura K, Gazdar AF, Date H (2008) Sequential molecular changes during multistage pathogenesis of small peripheral adenocarcinomas of the lung. J Thorac Oncol 3:340–347

    Article  PubMed  Google Scholar 

  3. Lantuejoul S, Salameire D, Salon C, Brambilla E (2009) Pulmonary preneoplasia–sequential molecular carcinogenetic events. Histopathology 54:43–54

    Article  PubMed  Google Scholar 

  4. Yoo SB, Chung JH, Lee HJ, Lee CT, Jheon S, Sung SW (2010) Epidermal growth factor receptor mutation and p53 overexpression during the multistage progression of small adenocarcinoma of the lung. J Thorac Oncol 5:964–969

    PubMed  Google Scholar 

  5. Sugio K, Kishimoto Y, Virmani AK, Hung JY, Gazdar AF (1994) K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas. Cancer Res 54:5811–5815

    PubMed  CAS  Google Scholar 

  6. Yoshida Y, Shibata T, Kokubu A, Tsuta K, Matsuno Y, Kanai Y, Asamura H, Tsuchiya R, Hirohashi S (2005) Mutations of the epidermal growth factor receptor gene in atypical adenomatous hyperplasia and bronchioloalveolar carcinoma of the lung. Lung Cancer 50:1–8

    Article  PubMed  Google Scholar 

  7. Sakamoto H, Shimizu J, Horio Y, Ueda R, Takahashi T, Mitsudomi T, Yatabe Y (2007) Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. J Pathol 212:287–294

    Article  PubMed  CAS  Google Scholar 

  8. Sakuma Y, Matsukuma S, Yoshihara M, Nakamura Y, Noda K, Nakayama H, Kameda Y, Tsuchiya E, Miyagi Y (2007) Distinctive evaluation of nonmucinous and mucinous subtypes of bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: confirmation of the correlations with histologic subtypes and gene mutations. Am J Clin Pathol 128:100–108

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda K, Nomori H, Ohba Y, Shibata H, Mori T, Honda Y, Iyama K, Kobayashi T (2008) Epidermal growth factor receptor mutations in multicentric lung adenocarcinomas and atypical adenomatous hyperplasias. J Thorac Oncol 3:467–471

    Article  PubMed  Google Scholar 

  10. Sartori G, Cavazza A, Bertolini F, Longo L, Marchioni A, Costantini M, Barbieri F, Migaldi M, Rossi G (2008) A subset of lung adenocarcinomas and atypical adenomatous hyperplasia-associated foci are genotypically related: an EGFR, HER2, and K-ras mutational analysis. Am J Clin Pathol 129:202–210

    Article  PubMed  CAS  Google Scholar 

  11. Chung JH, Choe G, Jheon S, Sung SW, Kim TJ, Lee KW, Lee JH, Lee CT (2009) Epidermal growth factor receptor mutation and pathologic-radiologic correlation between multiple lung nodules with ground-glass opacity differentiates multicentric origin from intrapulmonary spread. J Thorac Oncol 4:1490–1495

    Article  PubMed  Google Scholar 

  12. Horiike A, Kimura H, Nishio K, Ohyanagi F, Satoh Y, Okumura S, Ishikawa Y, Nakagawa K, Horai T, Nishio M (2007) Detection of epidermal growth factor receptor mutation in transbronchial needle aspirates of non-small cell lung cancer. Chest 131:1628–1634

    Article  PubMed  CAS  Google Scholar 

  13. Sekido Y, Fong KM, Minna JD (2003) Molecular genetics of lung cancer. Annu Rev Med 54:73–87

    Article  PubMed  CAS  Google Scholar 

  14. Shu Y, Iijima T, Sun W, Kano J, Ishiyama T, Okubo C, Anami Y, Tanaka R, Fukai S, Noguchi M (2006) The ACIN1 gene is hypermethylated in early stage lung adenocarcinoma. J Thorac Oncol 1:160–167

    Article  PubMed  Google Scholar 

  15. Kubo T, Yamamoto H, Ichimura K, Jida M, Hayashi T, Otani H, Tsukuda K, Sano Y, Kiura K, Toyooka S (2009) DNA methylation in small lung adenocarcinoma with bronchioloalveolar carcinoma components. Lung Cancer 65:328–332

    Article  PubMed  Google Scholar 

  16. Isaacs WB, Bova GS, Morton RA, Bussemakers MJ, Brooks JD, Ewing CM (1994) Molecular biology of prostate cancer. Semin Oncol 21:514–521

    PubMed  CAS  Google Scholar 

  17. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    Article  PubMed  CAS  Google Scholar 

  18. Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH (2003) Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol 163:1371–1378

    Article  PubMed  CAS  Google Scholar 

  19. Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  PubMed  CAS  Google Scholar 

  20. Cho NY, Kim JH, Moon KC, Kang GH (2009) Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 454:17–23

    Article  PubMed  CAS  Google Scholar 

  21. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  22. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    Article  PubMed  CAS  Google Scholar 

  23. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    PubMed  CAS  Google Scholar 

  24. Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA (2002) DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 21:5450–5461

    Article  PubMed  CAS  Google Scholar 

  25. Belinsky SA (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4:707–717

    Article  PubMed  CAS  Google Scholar 

  26. Tsou JA, Shen LY, Siegmund KD, Long TI, Laird PW, Seneviratne CK, Koss MN, Pass HI, Hagen JA, Laird-Offringa IA (2005) Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 47:193–204

    Article  PubMed  Google Scholar 

  27. Shames DS, Girard L, Gao B et al (2006) A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med 3:e486

    Article  PubMed  Google Scholar 

  28. Travis WD, Brambilla E, Noguchi M et al (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multi-disciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed  Google Scholar 

  29. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836

    Article  PubMed  CAS  Google Scholar 

  30. Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW (2008) DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 88:161–170

    Article  PubMed  CAS  Google Scholar 

  31. Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, Makrigiorgos GM, Weisenberger DJ, Laird PW, Loda M, Fuchs CS (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8:209–217

    Article  PubMed  CAS  Google Scholar 

  32. Kim BH, Cho NY, Shin SH, Kwon HJ, Jang JJ, Kang GH (2009) CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma. Virchows Arch 455:343–351

    Article  PubMed  CAS  Google Scholar 

  33. Lee S, Hwang KS, Lee HJ, Kim JS, Kang GH (2004) Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Lab Invest 84:884–893

    Article  PubMed  CAS  Google Scholar 

  34. Kang GH, Lee S, Kim JS, Jung HY (2003) Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest 83:635–641

    PubMed  CAS  Google Scholar 

  35. Sato N, Fukushima N, Hruban RH, Goggins M (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21:238–244

    Article  PubMed  CAS  Google Scholar 

  36. Yamanaka M, Watanabe M, Yamada Y, Takagi A, Murata T, Takahashi H, Suzuki H, Ito H, Tsukino H, Katoh T, Sugimura Y, Shiraishi T (2003) Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 106:382–387

    Article  PubMed  CAS  Google Scholar 

  37. Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, Kondo H, Shimosato Y (1995) Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 75:2844–2852

    Article  PubMed  CAS  Google Scholar 

  38. Lee HJ, Choe G, Jheon S, Sung SW, Lee CT, Chung JH (2010) CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol 5:649–657

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the 21C Frontier Functional Human Genome Project, Ministry of Science & Technology in Korea (FG09-11-02; to GHK), by a grant from the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (0720540; to GHK), by a grant no 03-2009-002 from the SNUBH Research Fund (to JHC) and by a grant from Korea Healthcare technology R&D project, Ministry of Health and Welfare, Republic of Korea (A084578; to JHC)

Conflict of interest statement

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyeong Hoon Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, JH., Lee, H.J., Kim, Bh. et al. DNA methylation profile during multistage progression of pulmonary adenocarcinomas. Virchows Arch 459, 201–211 (2011). https://doi.org/10.1007/s00428-011-1079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1079-9

Keywords

Navigation