Skip to main content
Log in

CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Biliary intraepithelial neoplasia (BilIN) is the premalignant lesion of extrahepatic cholangiocarcinoma (EHC), and there are no published data regarding epigenetic changes throughout disease progression from normal biliary epithelia to BilIN to EHC. The objective of this study was to identify the occurrence of CpG island hypermethylation and repetitive DNA hypomethylation in BilIN. A total of 50 EHCs, 31 BilINs, and 31 normal cystic duct samples were analyzed for their methylation status in seven genes and two repetitive DNA elements. The number of methylated genes increased with disease progression (normal bile duct, 0.6; BilIN, 2.0; EHC, 3.6; P < 0.001). The methylation level of examined genes was significantly higher in BilIN than in normal samples (TMEFF2, HOXA1, NEUROG1, and RUNX3, P < 0.05) and in EHC than in BilIN samples (TMEFF2, HOXA1, NEUROG1, RUNX3, RASSF1A, and APC, P < 0.05). Long interspersed nucleotide element-1 (LINE-1) and juxtacentromeric satellite 2 (SAT2) methylation levels were markedly lower in EHC than in normal duct and BilIN samples, and BilIN samples showed a decrease of SAT2 methylation levels but no decrease of LINE-1 methylation levels compared to normal samples. These findings suggest that most of cancer-specific CpG island hypermethylation occur in the stage of BilIN and that CpG island hypermethylation seems to occur earlier than repetitive DNA element hypomethylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fleming KA, Boberg KM, Glaumann H et al (2001) Biliary dysplasia as a marker of cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 34:360–365

    Article  CAS  PubMed  Google Scholar 

  2. Laitio M (1983) Carcinoma of extrahepatic bile ducts. A histopathologic study. Pathol Res Pract 178:67–72

    CAS  PubMed  Google Scholar 

  3. Kim JPY, Kim H (1998) Immunohistochemical characteristics of biliary tract carcinoma and its precancerous lesions. Korean J Pathol 32:985–992

    Google Scholar 

  4. Suzuki M, Takahashi T, Ouchi K et al (1989) The development and extension of hepatohilar bile duct carcinoma. A three-dimensional tumor mapping in the intrahepatic biliary tree visualized with the aid of a graphics computer system. Cancer 64:658–666

    Article  CAS  PubMed  Google Scholar 

  5. Zen Y, Adsay NV, Bardadin K et al (2007) Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria. Mod Pathol 20:701–709

    Article  PubMed  Google Scholar 

  6. Scarpa A, Zamboni G, Achille A et al (1994) ras-family gene mutations in neoplasia of the ampulla of Vater. Int J Cancer 59:39–42

    Article  CAS  PubMed  Google Scholar 

  7. Suto T, Habano W, Sugai T et al (2000) Aberrations of the K-ras, p53, and APC genes in extrahepatic bile duct cancer. J Surg Oncol 73:158–163

    Article  CAS  PubMed  Google Scholar 

  8. Nakanishi Y, Zen Y, Kondo S et al (2008) Expression of cell cycle-related molecules in biliary premalignant lesions: biliary intraepithelial neoplasia and biliary intraductal papillary neoplasm. Hum Pathol 39:1153–1161

    Article  CAS  PubMed  Google Scholar 

  9. Sasaki M, Yamaguchi J, Itatsu K et al (2008) Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol 215:175–183

    Article  CAS  PubMed  Google Scholar 

  10. Zen Y, Aishima S, Ajioka Y et al (2005) Proposal of histological criteria for intraepithelial atypical/proliferative biliary epithelial lesions of the bile duct in hepatolithiasis with respect to cholangiocarcinoma: preliminary report based on interobserver agreement. Pathol Int 55:180–188

    Article  PubMed  Google Scholar 

  11. Tsuneyama K, Sasaki M, Shimonishi T et al (2004) Expression of MAGE-A3 in intrahepatic cholangiocarcinoma and its precursor lesions. Pathol Int 54:181–186

    Article  CAS  PubMed  Google Scholar 

  12. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    Article  CAS  PubMed  Google Scholar 

  13. Esteller M, Corn PG, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    CAS  PubMed  Google Scholar 

  14. Gaudet F, Hodgson JG, Eden A et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  15. Ogino S, Kawasaki T, Nosho K et al (2008) LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 122:2767–2773

    Article  CAS  PubMed  Google Scholar 

  16. Weisenberger DJ, Campan M, Long TI et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836

    Article  CAS  PubMed  Google Scholar 

  17. Isaacs WB, Bova GS, Morton RA et al (1994) Molecular biology of prostate cancer. Semin Oncol 21:514–521

    CAS  PubMed  Google Scholar 

  18. Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  CAS  PubMed  Google Scholar 

  19. Lee S, Lee HJ, Kim JH et al (2003) Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol 163:1371–1378

    CAS  PubMed  Google Scholar 

  20. Cho NY, Kim JH, Moon KC et al (2009) Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 454:17–23

    Article  CAS  PubMed  Google Scholar 

  21. Kim BH, Cho NY, Choi M et al (2007) Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Arch Pathol Lab Med 131:923–930

    CAS  PubMed  Google Scholar 

  22. Greene FL, American Joint Committee on Cancer, American Cancer Society (2002) AJCC cancer staging manual, 6th edn. Springer, New York

    Google Scholar 

  23. Aaltonen LA, Hamilton SR, World Health Organization, International Agency for Research on Cancer (2000) Pathology and genetics of tumours of the digestive system. IARC, Lyon

    Google Scholar 

  24. Ogino S, Kawasaki T, Brahmandam M et al (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8:209–217

    Article  CAS  PubMed  Google Scholar 

  25. Chalitchagorn K, Shuangshoti S, Hourpai N et al (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23:8841–8846

    Article  CAS  PubMed  Google Scholar 

  26. Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    Article  CAS  PubMed  Google Scholar 

  27. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  28. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  29. Gama-Sosa MA, Slagel VA, Trewyn RW et al (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894

    Article  CAS  PubMed  Google Scholar 

  30. Lee S, Hwang KS, Lee HJ et al (2004) Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Lab Invest 84:884–893

    Article  CAS  PubMed  Google Scholar 

  31. Kang GH, Lee S, Kim JS et al (2003) Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest 83:635–641

    CAS  PubMed  Google Scholar 

  32. Sato N, Fukushima N, Hruban RH et al (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21:238–244

    Article  CAS  PubMed  Google Scholar 

  33. Yamanaka M, Watanabe M, Yamada Y et al (2003) Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 106:382–387

    Article  CAS  PubMed  Google Scholar 

  34. Lee HS, Kim BH, Cho NY et al (2009) Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res 15:812–820

    Article  CAS  PubMed  Google Scholar 

  35. Herman JG, Graff JR, Myohanen S et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    Article  CAS  PubMed  Google Scholar 

  36. Brandes JC, Carraway H, Herman JG (2007) Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter. Oncogene 26:6229–6237

    Article  CAS  PubMed  Google Scholar 

  37. Graff JR, Herman JG, Myohanen S et al (1997) Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 272:22322–22329

    Article  CAS  PubMed  Google Scholar 

  38. Ponchon T, Gagnon P, Berger F et al (1995) Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: results of a prospective study. Gastrointest Endosc 42:565–572

    Article  CAS  PubMed  Google Scholar 

  39. Tada M, Yokosuka O, Omata M et al (1990) Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer 66:930–935

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Cancer Research Institute Research Fund, a grant from the Seoul National University Hospital Research Fund (03-2008-020-0), and the Korea Research Foundation Grant (MOEHRD; KRF-2008-041-E00099).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyeong Hoon Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table 1

Histologic features of EHCs and BilINs (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Bh., Cho, NY., Shin, S.H. et al. CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma. Virchows Arch 455, 343–351 (2009). https://doi.org/10.1007/s00428-009-0829-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0829-4

Keywords

Navigation