Skip to main content

Advertisement

Log in

Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Soft tissue sarcomas are malignant neoplasms derived from mesenchymal tissues. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. In the past decade, gene expression profiling has been applied to sarcomas to facilitate understanding of sarcoma pathogenesis and to identify diagnostic, prognostic, and predictive markers. In this paper, we review this body of work and discuss how gene expression profiling has led to advancements in the understanding of sarcoma pathobiology, the identification of clinically useful biomarkers, and the refinement of sarcoma classification schemes. Lastly, we conclude with a discussion of strategies to further optimize the translation of gene expression data into a greater understanding of sarcoma pathogenesis and improved clinical outcomes for sarcoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weiss SW, Goldblum JR (2008) Enzinger and Weiss’s soft tissue tumors, 5th edn. Mosby/Elsevier, Philadelphia

    Google Scholar 

  2. Fletcher CDM, Unni KK, Mertens F et al (2002) Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon

    Google Scholar 

  3. Wendtner CM, Abdel-Rahman S, Krych M et al (2002) Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol 20:3156–3164

    Article  PubMed  CAS  Google Scholar 

  4. O’Sullivan B, Davis AM, Turcotte R et al (2002) Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet 359:2235–2241

    Article  PubMed  Google Scholar 

  5. Borden EC, Baker LH, Bell RS et al (2003) Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 9:1941–1956

    PubMed  Google Scholar 

  6. Judson I (2008) State-of-the-art approach in selective curable tumours: soft tissue sarcoma. Ann Oncol 19(Suppl 7):vii166–vii169

    Article  PubMed  Google Scholar 

  7. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  8. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    Article  PubMed  CAS  Google Scholar 

  9. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  PubMed  CAS  Google Scholar 

  10. Fodor SP, Rava RP, Huang XC et al (1993) Multiplexed biochemical assays with biological chips. Nature 364:555–556

    Article  PubMed  CAS  Google Scholar 

  11. Allison DB, Cui X, Page GP et al (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7:55–65

    Article  PubMed  CAS  Google Scholar 

  12. Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960

    Article  PubMed  CAS  Google Scholar 

  13. Rhodes DR, Chinnaiyan AM (2004) Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Ann N Y Acad Sci 1020:32–40

    Article  PubMed  CAS  Google Scholar 

  14. Rhodes DR, Kalyana-Sundaram S, Tomlins SA et al (2007) Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9:443–454

    Article  PubMed  CAS  Google Scholar 

  15. Segal E, Friedman N, Kaminski N et al (2005) From signatures to models: understanding cancer using microarrays. Nat Genet 37(Suppl):S38–S45

    Article  PubMed  CAS  Google Scholar 

  16. Potti A, Dressman HK, Bild A et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300

    Article  PubMed  CAS  Google Scholar 

  17. Tschoep K, Kohlmann A, Schlemmer M et al (2007) Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 63:111–124

    Article  PubMed  Google Scholar 

  18. Eilber FC, Dry SM (2008) Diagnosis and management of synovial sarcoma. J Surg Oncol 97:314–320

    Article  PubMed  Google Scholar 

  19. Clark J, Rocques PJ, Crew AJ et al (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508

    Article  PubMed  CAS  Google Scholar 

  20. Kawai A, Woodruff J, Healey JH et al (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338:153–160

    Article  PubMed  CAS  Google Scholar 

  21. Haldar M, Randall RL, Capecchi MR (2008) Synovial sarcoma: from genetics to genetic-based animal modeling. Clin Orthop Relat Res 466:2156–2167

    Article  PubMed  Google Scholar 

  22. Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307

    Article  PubMed  CAS  Google Scholar 

  23. Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759

    Article  PubMed  CAS  Google Scholar 

  24. Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235

    Article  PubMed  CAS  Google Scholar 

  25. Segal NH, Pavlidis P, Antonescu CR et al (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163:691–700

    PubMed  CAS  Google Scholar 

  26. Allander SV, Illei PB, Chen Y et al (2002) Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 161:1587–1595

    PubMed  CAS  Google Scholar 

  27. Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73

    Article  PubMed  CAS  Google Scholar 

  28. Nagayama S, Katagiri T, Tsunoda T et al (2002) Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res 62:5859–5866

    PubMed  CAS  Google Scholar 

  29. Henderson SR, Guiliano D, Presneau N et al (2005) A molecular map of mesenchymal tumors. Genome Biol 6:R76

    Article  PubMed  CAS  Google Scholar 

  30. Nielsen TO, Hsu FD, O’Connell JX et al (2003) Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol 163:1449–1456

    PubMed  CAS  Google Scholar 

  31. Terry J, Saito T, Subramanian S et al (2007) TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 31:240–246

    Article  PubMed  Google Scholar 

  32. Barco R, Hunt LB, Frump AL et al (2007) The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Mol Biol Cell 18:4003–4012

    Article  PubMed  CAS  Google Scholar 

  33. Lee YF, John M, Edwards S et al (2003) Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 88:510–515

    Article  PubMed  CAS  Google Scholar 

  34. Fernebro J, Francis P, Eden P et al (2006) Gene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. Int J Cancer 118:1165–1172

    Article  PubMed  CAS  Google Scholar 

  35. Ladanyi M, Antonescu CR, Leung DH et al (2002) Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res 62:135–140

    PubMed  CAS  Google Scholar 

  36. Guillou L, Benhattar J, Bonichon F et al (2004) Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 22:4040–4050

    Article  PubMed  Google Scholar 

  37. Takenaka S, Ueda T, Naka N et al (2008) Prognostic implication of SYT-SSX fusion type in synovial sarcoma: a multi-institutional retrospective analysis in Japan. Oncol Rep 19:467–476

    PubMed  Google Scholar 

  38. Ray-Coquard I, Le Cesne A, Whelan JS et al (2008) A phase II study of gefitinib for patients with advanced HER-1 expressing synovial sarcoma refractory to doxorubicin-containing regimens. Oncologist 13:467–473

    Article  PubMed  CAS  Google Scholar 

  39. Lubieniecka JM, de Bruijn DR, Su L et al (2008) Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 68:4303–4310

    Article  PubMed  CAS  Google Scholar 

  40. Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204

    Article  PubMed  CAS  Google Scholar 

  41. Lee CH, Espinosa I, Vrijaldenhoven S et al (2008) Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 14:1423–1430

    Article  PubMed  CAS  Google Scholar 

  42. Dei Tos AP (2000) Liposarcoma: new entities and evolving concepts. Ann Diagn Pathol 4:252–266

    Article  PubMed  CAS  Google Scholar 

  43. Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636

    Article  PubMed  CAS  Google Scholar 

  44. Sirvent N, Coindre JM, Maire G et al (2007) Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 31:1476–1489

    Article  PubMed  Google Scholar 

  45. Matushansky I, Hernando E, Socci ND et al (2008) A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172:1069–1080

    Article  PubMed  CAS  Google Scholar 

  46. Tos AP (2006) Classification of pleomorphic sarcomas: where are we now? Histopathology 48:51–62

    Article  Google Scholar 

  47. Ozzello L, Stout AP, Murray MR (1963) Cultural characteristics of malignant histiocytomas and fibrous xanthomas. Cancer 16:331–344

    Article  PubMed  CAS  Google Scholar 

  48. Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 16:213–228

    Article  PubMed  CAS  Google Scholar 

  49. Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050

    PubMed  CAS  Google Scholar 

  50. Fletcher CD (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12

    Article  PubMed  CAS  Google Scholar 

  51. Matushansky I, Hernando E, Socci ND et al (2007) Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 117:3248–3257

    Article  PubMed  CAS  Google Scholar 

  52. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130:1466–1478

    PubMed  CAS  Google Scholar 

  53. Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    Article  PubMed  CAS  Google Scholar 

  54. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    Article  PubMed  CAS  Google Scholar 

  55. Sciot R, Debiec-Rychter M, Daugaard S et al (2008) Distribution and prognostic value of histopathologic data and immunohistochemical markers in gastrointestinal stromal tumours (GISTs): an analysis of the EORTC phase III trial of treatment of metastatic GISTs with imatinib mesylate. Eur J Cancer 44:1855–1860

    Article  PubMed  Google Scholar 

  56. Subramanian S, West RB, Corless CL et al (2004) Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene 23:7780–7790

    Article  PubMed  CAS  Google Scholar 

  57. West RB, Corless CL, Chen X et al (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165:107–113

    PubMed  CAS  Google Scholar 

  58. Espinosa I, Lee CH, Kim MK et al (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218

    Article  PubMed  Google Scholar 

  59. Yang YD, Cho H, Koo JY et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  60. Price ND, Trent J, El-Naggar AK et al (2007) Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci U S A 104:3414–3419

    Article  PubMed  CAS  Google Scholar 

  61. Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  PubMed  CAS  Google Scholar 

  62. Ohali A, Avigad S, Zaizov R et al (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 23:8997–9006

    Article  PubMed  CAS  Google Scholar 

  63. Cheung IY, Feng Y, Danis K et al (2007) Novel markers of subclinical disease for Ewing family tumors from gene expression profiling. Clin Cancer Res 13:6978–6983

    Article  PubMed  CAS  Google Scholar 

  64. Ferreira BI, Alonso J, Carrillo J et al (2008) Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma. Oncogene 27:2084–2090

    Article  PubMed  CAS  Google Scholar 

  65. Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7:250–256

    PubMed  CAS  Google Scholar 

  66. Davicioni E, Finckenstein FG, Shahbazian V et al (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66:6936–6946

    Article  PubMed  CAS  Google Scholar 

  67. Ebauer M, Wachtel M, Niggli FK et al (2007) Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26:7267–7281

    Article  PubMed  CAS  Google Scholar 

  68. Lae M, Ahn EH, Mercado GE et al (2007) Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 212:143–151

    Article  PubMed  CAS  Google Scholar 

  69. Wachtel M, Dettling M, Koscielniak E et al (2004) Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64:5539–5545

    Article  PubMed  CAS  Google Scholar 

  70. Ren YX, Finckenstein FG, Abdueva DA et al (2008) Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 68:6587–6597

    Article  PubMed  CAS  Google Scholar 

  71. Schaefer KL, Eisenacher M, Braun Y et al (2008) Microarray analysis of Ewing’s sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 44:699–709

    PubMed  CAS  Google Scholar 

  72. Linn SC, West RB, Pollack JR et al (2003) Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol 163:2383–2395

    PubMed  CAS  Google Scholar 

  73. West RB, Harvell J, Linn SC et al (2004) Apo D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 28:1063–1069

    Article  PubMed  Google Scholar 

  74. Lazar AJ, Tuvin D, Hajibashi S et al (2008) Specific mutations in the {beta}-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 173:1518–1527

    Article  PubMed  CAS  Google Scholar 

  75. Beck AH, Espinosa I, Gilks CB et al (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601

    Article  PubMed  CAS  Google Scholar 

  76. West RB, Nuyten DS, Subramanian S et al (2005) Determination of stromal signatures in breast carcinoma. PLoS Biol 3:e187

    Article  PubMed  CAS  Google Scholar 

  77. Bacac M, Migliavacca E, Stehle JC et al (2006) A gene expression signature that distinguishes desmoid tumours from nodular fasciitis. J Pathol 208:543–553

    Article  PubMed  CAS  Google Scholar 

  78. Heinrich MC, McArthur GA, Demetri GD et al (2006) Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 24:1195–1203

    Article  PubMed  CAS  Google Scholar 

  79. Kotiligam D, Lazar AJ, Pollock RE et al (2008) Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol 23:117–126

    PubMed  CAS  Google Scholar 

  80. West RB, Rubin BP, Miller MA et al (2006) A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci U S A 103:690–695

    Article  PubMed  CAS  Google Scholar 

  81. Murray LJ, Abrams TJ, Long KR et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20:757–766

    Article  PubMed  CAS  Google Scholar 

  82. Beck AH, Espinosa I, Edris B et al (2009) The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 15:778–787

    Article  PubMed  CAS  Google Scholar 

  83. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  84. Parkinson H, Sarkans U, Shojatalab M et al (2005) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555

    Article  PubMed  CAS  Google Scholar 

  85. Bild AH, Potti A, Nevins JR (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6:735–741

    Article  PubMed  CAS  Google Scholar 

  86. Hu P, Bader G, Wigle DA et al (2007) Computational prediction of cancer-gene function. Nat Rev Cancer 7:23–34

    Article  PubMed  CAS  Google Scholar 

  87. Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  PubMed  CAS  Google Scholar 

  88. Lamb J (2007) The connectivity map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  PubMed  Google Scholar 

  89. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  90. von Mering C, Jensen LJ, Kuhn M et al (2007) STRING 7—recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362

    Article  Google Scholar 

  91. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  PubMed  CAS  Google Scholar 

  92. Segal E, Friedman N, Koller D et al (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098

    Article  PubMed  Google Scholar 

  93. Rhodes DR, Yu J, Shanker K et al (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101:9309–9314

    Article  PubMed  CAS  Google Scholar 

  94. Bonnefoi H, Potti A, Delorenzi M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 8:1071–1078

    Article  PubMed  CAS  Google Scholar 

  95. Dressman HK, Berchuck A, Chan G et al (2007) An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25:517–525

    Article  PubMed  CAS  Google Scholar 

  96. Subramanian S, Lui WO, Lee CH et al (2008) MicroRNA expression signature of human sarcomas. Oncogene 27:2015–2026

    Article  PubMed  CAS  Google Scholar 

  97. Camp RL, Neumeister V, Rimm DL (2008) A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 26:5630–5637

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt van de Rijn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, A.H., West, R.B. & van de Rijn, M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers. Virchows Arch 456, 141–151 (2010). https://doi.org/10.1007/s00428-009-0774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0774-2

Keywords

Navigation