Skip to main content
Log in

From shoot to leaf: step-wise shifts in meristem and KNOX1 activity correlate with the evolution of a unifoliate body plan in Gesneriaceae

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Typical dicots possess equal-sized cotyledons and leaf-bearing shoots topped with a shoot apical meristem (SAM), the source of lateral organs, and where KNOX1 homeobox genes act as key regulators. New World Gesneriaceae show typical cotyledons, whereas Old World Gesneriaceae show anisocotyly, the unequal post-germination growth of cotyledons, and include unifoliate (one-leaf) plants. One-leaf plants show an extremely reduced body plan: the adult above-ground photosynthetic tissue consisting of a single cotyledon, a macrocotyledon enlarged by the basal meristem (BM), but lacking a SAM. To investigate the origin and evolution of the BM and one-leaf plants, the meristem activity and KNOX1 SHOOTMERISTEMLESS (STM) expression in cotyledons and leaves were systematically studied by RT-PCR and in situ hybridization across the family Gesneriaceae, Jovellana in Calceolariaceae (sister family to Gesneriaceae), and Antirrhinum in Plantaginaceae, all families of order Lamiales (asterids), in comparison to Arabidopsis (Brassicales, rosids). In all examined Lamiales samples, unlike Arabidopsis, BM activity accompanied by STM expression was found in both cotyledons in early stages. Foliage leaves of Gesneriaceae and Jovellana also showed the correlation of BM and STM expression. An extension of BM activity was found following a phylogenetic trajectory towards one-leaf plants where it is active throughout the lifetime of the macrocotyledon. Our results suggest that KNOX1 involvement in early cotyledon expansion originated early on in the diversification of Lamiales and is proposed as the prerequisite for the evolution of vegetative diversity in Gesneriaceae. Step-wise morphological shifts, driven by transfers of meristematic activity, as evidenced by shifts in KNOX1 expression, may be one mechanism by which morphological diversity evolves in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Auto Con 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Allaby M (2012) Oxford dictionary of plant sciences. Oxford University Press, Oxford

    Google Scholar 

  • Avery GS (1933) Structure and germination of tobacco seed and the developmental anatomy of the seedling plant. Amer J Bot 20:309–327

    Article  Google Scholar 

  • Ayano M, Imaichi R, Kato M (2005) Developmental morphology of the Asian one-leaf plant, Monophyllaea glabra (Gesneriaceae) with emphasis on inflorescence morphology. J Pl Res 118:99–109. doi:10.1007/s10265-005-0195-5

    Article  Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831. doi:10.1016/0168-9525(94)90143-0

    Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha N (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860. doi:10.1126/science.1070343

    Article  CAS  PubMed  Google Scholar 

  • Burtt BL (1963) Studies in the Gesneriaceae of the Old World, XXIV: tentative keys to the tribes and genera. Notes Roy Bot Gard Edinburgh 24:205–220

    Google Scholar 

  • Burtt BL (1970) Studies in the Gesneriaceae of the Old World XXXI: some aspects of functional evolution. Notes Roy Bot Gard Edinburgh 30:1–9

    Google Scholar 

  • Cronk QCB, Möller M (1997) Strange morphogenesis—organ determination in Monophyllaea. Trends Pl Sci 2:327–328. doi:10.1016/S1360-1385(97)84614-6

    Article  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419. doi:10.1006/dbio.1999.9443

    Article  CAS  PubMed  Google Scholar 

  • Esau K (1953) Plant Anatomy. Wiley, New York

    Google Scholar 

  • Fridlender M, Lev-Yadun S, Baburek I, Angelis K, Levy AA (1996) Cell divisions in cotyledons after germination: localization, time course and utilization for a mutagenesis assay. Planta 199:307–313. doi:10.1007/BF00196573

    Article  CAS  Google Scholar 

  • Golz JF, Keck EJ, Hudson A (2002) Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr Biol 12:515–522. doi:10.1016/S0960-9822(02)00721-2

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro I, Nunes A, Woltering J, Casaca A, Nóvoa A, Vinagre T, Hunter M, Duboule D, Mallo M (2013) Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci U S A 110:10682–10686. doi:10.1073/pnas.1300592110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98. doi:10.1021/bk-1999-0734.ch008

    CAS  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744. doi:10.1016/S0092-8674(00)81051-X

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, Möller M, Langdale J, Cronk QCB, Hudson A (2005) The role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell 17:430–443. doi:10.1105/tpc.104.028936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565. doi:10.1016/S0960-9822(02)01125-9

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genet 38:942–947. doi:10.1038/ng1835

    Article  CAS  PubMed  Google Scholar 

  • Hilliard OM, Burtt BL (1971) Streptocarpus. An African plant study. Natal University Press, Pietermaritzburg

    Google Scholar 

  • Imaichi R, Nagumo S, Kato M (2000) Ontogenetic anatomy of Streptocarpus grandis (Gesneriaceae) with implications for evolution of monophylly. Ann Bot 86:37–46. doi:10.1006/anbo.2000.1155

    Article  Google Scholar 

  • Imaichi R, Omura-Shimadate M, Ayano M, Kato M (2007) Developmental morphology of the caulescent species Streptocarpus pallidiflorus (Gesneriaceae), with implications for evolution of monophylly. Int J Pl Sci 168:251–260. doi:10.1086/510410

    Article  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 6:1560–1565. doi:10.1016/j.cub.2005.07.023

    Article  Google Scholar 

  • Jong K (1970) Developmental aspects of vegetative morphology of Streptocarpus. Dissertation, University of Edinburgh

  • Jong K, Burtt BL (1975) The evolution of morphological novelty exemplified in the growth patterns of some Gesneriaceae. New Phytol 75:297–311. doi:10.1111/j.1469-8137.1975.tb01400.x

    Article  Google Scholar 

  • Kuwabara A, Nagata T (2006) Cellular basis of developmental plasticity observed in heterophyllous leaf formation of Ludwigia arcuata (Onagraceae). Planta 224:761–770. doi:10.1007/s00425-006-0258-4

    Article  CAS  PubMed  Google Scholar 

  • Lawrence WJC (1943) Photoperiodism in Streptocarpus. Gardeners’ Chronicle 3:113–156

    Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69. doi:10.1038/379066a0

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza R, Möller M, Harrison CJ, Fior S, De Luca C, Spada A (2007) Anisocotyly and meristem initiation in an unorthodox plant, Streptocarpus rexii (Gesneriaceae). Planta 225:653–663. doi:10.1007/s00425-006-0389-7

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza R, Tononi P, Möller M, Spada A (2009) WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta 230:529–542. doi:10.1007/s00425-009-0965-8

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Clark JL (2013) The state of molecular phylogenetic work in the family Gesneriaceae: a review. Selbyana 31:95–125

    Google Scholar 

  • Möller M, Cronk QCB (2001) Evolution of morphological novelty: a phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution 55:918–929. doi:10.1111/j.0014-3820.2001.tb00609.x

    Article  PubMed  Google Scholar 

  • Möller M, Forrest A, Wei Y-G, Weber A (2011) A molecular phylogenetic assessment of the advanced Asiatic and Malesian didymocarpoid Gesneriaceae with focus on non-monophyletic and monotypic genera. Plant Syst Evol 292:223–248. doi:10.1007/s00606-010-0413-z

    Article  Google Scholar 

  • Möller M, Pfosser M, Jang C-G, Mayer V, Clark A, Hollingsworth ML, Barfuss MHJ, Wang Y-Z, Kiehn M, Weber A (2009) A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: incongruence with available tribal classifications. Amer J Bot 96:989–1010. doi:10.3732/ajb.0800291

    Article  Google Scholar 

  • Nath U, Crawford BCW, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407. doi:10.1126/science.1079354

    Article  CAS  PubMed  Google Scholar 

  • Nishii K, Kuwabara A, Nagata T (2004) Characterization of anisocotylous leaf formation in Streptocarpus wendlandii (Gesneriaceae): significance of plant growth regulators. Ann Bot 94:457–467. doi:10.1093/aob/mch160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishii K, Möller M, Kidner CA, Spada A, Mantegazza R, Wang C-N, Nagata T (2010) A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev Genes Evol 220:25–40. doi:10.1007/s00427-010-0326-4

    Article  CAS  PubMed  Google Scholar 

  • Nishii K, Wang CN, Spada A, Nagata T, Möller M (2012) Gibberellin as a suppressor of lateral dominance and inducer of apical growth in the unifoliate Streptocarpus wendlandii. N Z J Bot 50:267–287. doi:10.1080/0028825X.2012.671775

    Article  Google Scholar 

  • Nishii K, Ho MJ, Chou YW, Gabotti D, Wang CN, Spada A, Möller M (2014) GA2 and GA20-oxidase expressions are associated with the meristem position in Streptocarpus rexii (Gesneriaceae). Plant Growth Regul 72:123–140. doi:10.1007/s10725-013-9844-1

    Article  CAS  Google Scholar 

  • Nishii K, Hughes M, Briggs M, Haston E, Christie F, DeVilliers MJ, Hanekom T, Roos WG, Bellstedt DU, Möller M (2015) Streptocarpus redefined to include all Afro-Malagasy Gesneriaceae: molecular phylogenies prove congruent with geography and cytology and uncovers remarkable morphological homoplasies. Taxon 64:1243–1274

    Article  Google Scholar 

  • Nylander JA (2004) MrModeltest, version 2. Program distributed by the author. Evolutionary Biology Centre. Uppsala University, Sweden

    Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative Expression Software Tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:E36. doi:10.1093/nar/30.9.e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Refulio-Rodriguez NF, Olmstead RG (2014) Phylogeny of Lamiidae. Amer J Bot 101:287–299. doi:10.3732/ajb.1300394

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Bot 61:539–542. doi:10.1093/sysbio/sys029

    Google Scholar 

  • Rosenblum IM, Basile DV (1984) Hormonal-regulation of morphogenesis in Streptocarpus and its relevance to evolutionary history of the Gesneriaceae. Amer J Bot 71:52–64

    Article  CAS  Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    CAS  PubMed  Google Scholar 

  • Schäferhoff B, Fleischmann A, Fischer E, Albach DC, Borsch T, Heubl G, Müller KF (2010) Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 10:352–371. doi:10.1186/1471-2148-10-352

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

  • Smith LG, Jackson D, Hake S (1995) Expression of Knotted1 marks shoot meristem formation during maize empryogenesis. Dev Genet 16:344–348. doi:10.1002/dvg.1020160407

    Article  Google Scholar 

  • Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 12. http://www.mobot.org/MOBOT/ research/APweb/.

  • Stoynova-Bakalova E, Karanov E, Petrov P, Hall MA (2004) Cell division and cell expansion in cotyledons of Arabidopsis seedlings. New Phytol 162:471–479. doi:10.1111/j.1469-8137.2004.01031.x

    Article  Google Scholar 

  • Tanaka M, Onimaru K (2012) Acquisition of the paired fins: a view from the sequential evolution of the lateral plate mesoderm. Evolution & Development 14:412–420

    Article  Google Scholar 

  • Tononi P, Möller M, Bencivenga S, Spada A (2010) GRAMINIFOLIA homolog expression in Streptocarpus rexii is associated with the basal meristems in phyllomorphs, a morphological novelty in Gesneriaceae. Evol & Dev 12:61–73. doi:10.1111/j.1525-142X.2009.00391.x

    Article  CAS  Google Scholar 

  • Tsukaya H (1997) Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea. Development 124:1275–1280. doi:10.1111/j.1525-142X.2012.00561.x

    CAS  PubMed  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243. doi:10.1038/350241a0

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Clark J, Möller M (2013) A new formal classification of Gesneriaceae. Selbyana 31:68–94

    Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571. doi:10.1016/j.cub.2005.07.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Gibby for the support and helpful comments on this work, as well as P. Hollingsworth, T. Pennington, and C. Kidner for helpful comments. We thank J. Preston at the University of Vermont (USA) for critical comments on an earlier version of the manuscript. The work was supported by the Royal Botanic Garden Edinburgh (RBGE, UK) and the Sibbald Trust (project 2012#9) at the RBGE. KN was supported by the Top100-University scheme of the National Taiwan University (NTU, Taiwan, Grant Number 10R40044) and the Japan Society of Promotion of Science (JSPS KAKENHI Grant Number 15K18593). We thank S.-T. Jeng and T.-P. Lin for supporting KN’s stay at NTU; A. Iwamoto and H. Iida for supporting KN’s stay at Tokyo Gakugei University; K.-J. Tang and Y.-Y. Gao (Techcomm, NTU) for technical support at NTU; and M. Hart, F. Christie, R. Holland, and L. Forrest for technical support at RBGE. We thank S. Barber, S. Scott, and C. Morter for the growing research materials. RBGE is supported by the Rural and Environment Science and Analytical Services Division (RESAS) in the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Möller.

Additional information

Communicated by Sureshkumar Balasubramanian

Electronic supplementary material

Online Resource 1

(PDF 15 kb)

Online Resource 2

(PDF 136 kb)

Online Resource 3

(PDF 174 kb)

Online Resource 4

(PDF 141 kb)

Online Resource 5

(PDF 89.9 kb)

Online Resource 6

(PDF 124 kb)

Online Resource 7

(PDF 220 kb)

Online Resource 8

(PDF 344 kb)

Online Resource 9

(PDF 230 kb)

Online Resource 10

(PDF 138 kb)

Online Resource 11

(PDF 15 kb)

Online Resource 12

(PDF 194 kb)

Online Resource 13

(PDF 186 kb)

Online Resource 14

(PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishii, K., Huang, BH., Wang, CN. et al. From shoot to leaf: step-wise shifts in meristem and KNOX1 activity correlate with the evolution of a unifoliate body plan in Gesneriaceae. Dev Genes Evol 227, 41–60 (2017). https://doi.org/10.1007/s00427-016-0568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0568-x

Keywords

Navigation