Skip to main content
Log in

Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the “secondary gastrulation” hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Davidson EH, Peterson KJ, Cameron RA (1995) Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science 270:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96

    Article  CAS  PubMed  Google Scholar 

  • De Velasco B, Shen J, Go S, Hartenstein V (2004) Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev Biol 274:280–294

    Article  CAS  PubMed  Google Scholar 

  • Fioroni V (1979) Abändarungen des Gastrulationsverlaufs und ihre phylogenetische Bedeutung. In: Suewing R (ed) Erlanger Symp. Ontogenie Evolutionsforsch: Ontogenie unid Phylogenie. Parey, Hamburg, pp 100–119

    Google Scholar 

  • Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U (2007) Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 310:264–279

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J, Martindale MQ, Hejnol A (2011) Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle. EvoDevo 2:1

    Article  Google Scholar 

  • Gold DA, Nakanishi N, Hensley NM et al (2015) Structural and developmental disparity in the tentacles of the moon jellyfish Aurelia sp.1. PLoS ONE 10:e0134741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold DA, Jacobs DK (2013) Stem cell dynamics in Cnidaria: are there unifying principles? Dev Genes Evol 223(1-2):53–66

    Article  PubMed  Google Scholar 

  • Helm RR, Tiozzo S, Lilley MKS et al (2015) Comparative muscle development of scyphozoan jellyfish with simple and complex life cycles. EvoDevo 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde JH (1894) Entwicklungsgeschichte einiger Scyphomedusen. Z Wiss Zool 58:531–565

    Google Scholar 

  • Kraus JEM, Fredman D, Wang W et al (2015) Adoption of conserved developmental genes in development and origin of the medusa body plan. EvoDevo 56:753–777

    Google Scholar 

  • Maslakova SA (2010) Development to metamorphosis of the nemertean pilidium larva. Front Zool 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayorova TD, Kosevich IA, Melekhova OP (2012) On some features of embryonic development and metamorphosis of Aurelia aurita (Cnidaria, Scyphozoa). Russ J Dev Biol 43:271–285

    Article  CAS  Google Scholar 

  • Martín-Durán JM, Egger B (2012) Developmental diversity in free-living flatworms. EvoDevo 3:1

    Article  Google Scholar 

  • Martindale M, Hejnol A (2009) A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17:162–174

    Article  CAS  PubMed  Google Scholar 

  • Mergner H (1971) Chapter 1: cnidaria. In: Reverberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North Holland, Amsterdam, pp 1–84

    Google Scholar 

  • Morris J, Nallur R, Ladurner P, Egger B, Rieger R, Hartenstein V (2004) The embryonic development of the flatworm Macrostomum sp. Dev Genes Evol 214:220–239

    Article  PubMed  Google Scholar 

  • Nakanishi N, Yuan D, Jacobs DK, Hartenstein V (2008) Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa). Dev Genes Evol 218:511–524

    Article  PubMed  Google Scholar 

  • Pennati R, Dell’Anna A, Pagliara P et al (2013) Neural system reorganization during metamorphosis in the planula larva of Clava multicornis (Hydrozoa, Cnidaria). Zoomorphology 132:227–237

    Article  Google Scholar 

  • Seipp S, Schmich J, Leitz T (2001) Apoptosis—a death-inducing mechanism tightly linked with morphogenesis in Hydractina echinata (Cnidaria, Hydrozoa). Development 128:4891–4898

    CAS  PubMed  Google Scholar 

  • Seipp S, Schmich J, Will B et al (2010) Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). Invert Neurosci 10:77–91

    Article  CAS  PubMed  Google Scholar 

  • Smith F (1891) The gastrulation of Aurelia flavidula, Pér. & Les. Bull Museum Comparat Zool Harvard College 22:115–125

    Google Scholar 

  • Takashima S, Gold D, Hartenstein V (2013) Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol 223:85–102

    Article  PubMed  Google Scholar 

  • Temereva EN, Malakhov VV (2015) Metamorphic remodeling of morphology and the body cavity in Phoronopsis harmeri (Lophotrochozoa, Phoronida): the evolution of the phoronid body plan and life cycle. BMC Evol Biol 15:1

    Article  CAS  Google Scholar 

  • Yuan D, Nakanishi N, Jacobs DK, Hartenstein V (2008) Embryonic development and metamorphosis of the scyphozoan Aurelia. Dev Genes Evol 218:525–539

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the NASA Astrobiology Institute (NNA13AA90A) Foundations of Complex Life, Evolution, Preservation, and Detection on Earth and Beyond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Jacobs.

Additional information

Communicated by Angelika Stollewerk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gold, D.A., Nakanishi, N., Hensley, N.M. et al. Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia . Dev Genes Evol 226, 383–387 (2016). https://doi.org/10.1007/s00427-016-0559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0559-y

Keywords

Navigation