Skip to main content
Log in

Notch signaling does not regulate segmentation in the honeybee, Apis mellifera

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Notch signaling has been implicated in the segmentation of vertebrates but is not involved in segmentation in Drosophila. Recent evidence, however, implies that Notch signaling regulates segmentation in some Arthropods, including an insect, and that Notch signaling regulated segmentation in the common ancestor of Vertebrates and Arthropods. Notch signaling regulates clock-like formation of segments in both groups, a phenomenon not seen in Drosophila. We present evidence that Notch signaling components are expressed in a pattern implying a role in segmentation in honeybees, where the expression of genes involved in segmentation are modulated in a temporal way. Despite this, pharmacological investigation and RNA interference experiments indicate that Notch signaling does not regulate segmentation in honeybees, but instead regulates patterning within segments after segmentation itself has occurred. Notch signaling thus does not regulate segmentation in holometabolous insects, even when segments appear to form in anterior−posterior sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alton AK, Fechtel K, Terry AL, Meikle SB, Muskavitch MA (1988) Cytogenetic definition and morphogenetic analysis of Delta, a gene affecting neurogenesis in Drosophila melanogaster. Genetics 118(2):235–245

    CAS  PubMed  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Muskavitch MA, Yedvobnick B (1983) Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci USA 80(7):1977–1981

    Article  CAS  PubMed  Google Scholar 

  • Baker NE (1988) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103(2):289–298

    CAS  PubMed  Google Scholar 

  • Beye M, Hartel S, Hagen A, Hasselmann M, Omholt SW (2002) Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol Biol 11(6):527–532

    Article  CAS  PubMed  Google Scholar 

  • Chipman AD, Akam M (2008) The segmentation cascade in the centipede strigamia maritima: involvement of the notch pathway and pair-rule gene homologues. Dev Biol 319:160–169

    Article  CAS  PubMed  Google Scholar 

  • Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129(5):1239–1250

    CAS  PubMed  Google Scholar 

  • Dearden PK, Akam ME (2000) A role for fringe in segment morphogenesis but not segment formation in the grasshopper, Schistocerca gregaria. Dev Genes Evol 210(7):329–336

    Article  CAS  PubMed  Google Scholar 

  • Dearden P, Akam ME (2001) Early embryo patterning in the grasshopper, schistocerca gregaria; wingless, dpp and caudal expression. Development 128(18):3435–3444

    CAS  PubMed  Google Scholar 

  • Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gemp T, Schioett M, Brown SJ, Elsik CG, Holland PW, Kadowaki T, Beye M (2006) Patterns of conservation and change in honey bee developmental genes. Genome Res 16:1376–1384

    Article  CAS  PubMed  Google Scholar 

  • Dearden PK, Duncan EJ, Wilson MJ (2010) The honeybee Apis mellifera. In: Crotty DA, Gann A (eds) Emerging model organisms: a laboratory manual 2, vol 2. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Dequéant ML, Pourquié O (2008) Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9(5):370–382

    Article  PubMed  Google Scholar 

  • Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130(10):2161–2171

    Article  CAS  PubMed  Google Scholar 

  • Dovey HF, John V, Anderson JP, Chen LZ, de Saint AP, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S, Yin CT, Schenk DB, May PC, Altstiel LD, Bender MH, Boggs LN, Britton TC, Clemens JC, Czilli DL, Dieckman-McGinty DK, Droste JJ, Fuson KS, Gitter BD, Hyslop PA, Johnstone EM, Li WY, Little SP, Mabry TE, Miller FD, Audia JE (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76(1):173–181

    Article  CAS  PubMed  Google Scholar 

  • Duncan EJ, Dearden PK (2010) Evolution of a genomic regulatory domain: the role of gene co-option and gene duplication in the enhancer of split complex. Genome Res 20:917–928

    Article  CAS  PubMed  Google Scholar 

  • DuPraw EJ (1967) The honeybee embryo. In: Wilt FH, Wessells NK (eds) Methods in developmental biology. Thomas Y Cromwell Company, New York, pp 183–217

    Google Scholar 

  • Felsenstein J (2004) Phylip (phylogeny inference package) version 3.6. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fleig R, Sander K (1986) Embryogenesis of the honeybee Apis mellifera l. (Hymenoptera: Apidae): an SEM study. Int J Insect Morphol Embryol 15(5):449–462

    Article  Google Scholar 

  • Forsberg H, Crozet F, Brown NA (1998) Waves of mouse lunatic fringe expression, in four-hour cycles at two- hour intervals, precede somite boundary formation. Curr Biol 8(18):1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Hartley DA, Xu TA, Artavanis-Tsakonas S (1987) The embryonic expression of the Notch locus of Drosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the predicted protein. EMBO J 6(11):3407–3417

    CAS  PubMed  Google Scholar 

  • Henry CA, Urban MK, Dill KK, Merlie JP, Page MF, Kimmel CB, Amacher SL (2002) Two linked hairy/enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 129(15):3693–3704

    CAS  PubMed  Google Scholar 

  • Holley SA, Geisler R, Nüsslein-Volhard C (2000) Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activaity. Genes Dev 14:1678–1690

    CAS  PubMed  Google Scholar 

  • Holley SA, Jülich D, Rauch GJ, Geisler R, Nüsslein-Volhard C (2002) Her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129(5):1175–1183

    CAS  PubMed  Google Scholar 

  • Hrabé de Angelis M, McIntyre J 2nd, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue dll1. Nature 386(6626):717–721

    Article  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol 247(1):47–61

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460

    Article  Google Scholar 

  • Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of notch signaling by delta. Dev Cell 4(1):67–82

    Article  CAS  PubMed  Google Scholar 

  • Jouve C, Palmeirim I, Henrique D, Beckers J, Gossler A, Ish-Horowicz D, Pourquié O (2000) Notch signaling is required for cyclic expression of the hairy-like gene hes1 in the presomitic mesoderm. Development 127(7):1421–1429

    CAS  PubMed  Google Scholar 

  • Jülich D, Hwee Lim C, Round J, Nicolaije C, Schroeder J, Davies A, Geisler R, Lewis J, Jiang YJ, Holley SA (2005) Beamter/deltac and the role of notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Dev Biol 286(2):391–404

    Article  PubMed  Google Scholar 

  • Kadner D, Stollewerk A (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects. Dev Genes Evol 214(8):367–379

    Article  CAS  PubMed  Google Scholar 

  • Krauss V, Pecyna M, Kurz K, Sass H (2004) Phylogenetic mapping of intron positions: a case study of translation initiation factor eif2{gamma}. Mol Biol Evol 22(1):74–84

    Article  PubMed  Google Scholar 

  • Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131(5):965–973

    Article  CAS  PubMed  Google Scholar 

  • Lehmann R, Jimenez F, Deitrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Roux’s Arch Dev Biol 192(2):62–74

    Google Scholar 

  • Liang Z, Biggin MD (1998) Eve and ftz regulate a wide array of genes in blastoderm embryos: the selector homeoproteins directly or indirectly regulate most genes in Drosophila. Development 125(22):4471–4482

    CAS  PubMed  Google Scholar 

  • McGrew MJ, Dale JK, Fraboulet S, Pourquié O (1998) The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 8(17):979–982

    Article  CAS  PubMed  Google Scholar 

  • Micchelli CA, Esler WP, Kimberly WT, Jack C, Berezovska O, Kornilova A, Hyman BT, Perrimon N, Wolfe MS (2003) Gamma-secretase/presenilin inhibitors for alzheimer’s disease phenocopy notch mutations in Drosophila. FASEB J 17(1):79–81

    CAS  PubMed  Google Scholar 

  • Müller M, v Weizsäcker E, Campos-Ortega JA (1996) Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development 122(7):2071–2078

    PubMed  Google Scholar 

  • Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367(6462):460–463

    Article  CAS  PubMed  Google Scholar 

  • Oates AC, Ho RK (2002) Hairy/e(spl)-related (her) genes are central components of the segmentation oscillator and display redundancy with the delta/notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129(12):2929–2946

    CAS  PubMed  Google Scholar 

  • Osborne P, Dearden PK (2005a) Expression of pax group III genes in the honeybee (Apis mellifera). Dev Genes Evol 215:499–508

    Article  CAS  PubMed  Google Scholar 

  • Osborne P, Dearden PK (2005b) Non-radioactive in situ hybridisation to honeybees embryos and ovaries. Apidologie 36:113–118

    Article  CAS  Google Scholar 

  • Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91(5):639–648

    Article  CAS  PubMed  Google Scholar 

  • Peel AD, Chipman AD, Akam M (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 6(12):905–916

    Article  CAS  PubMed  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci USA 105(43):16614–16619

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lercher MJ (2006) Phylogenomic analysis reveals bees and wasps (hymenoptera) at the base of the radiation of holometabolous insects. Genome Res 16(11):1334–1338

    Article  CAS  PubMed  Google Scholar 

  • Schoppmeier M, Damen WG (2005) Suppressor of hairless and presenilin phenotypes imply involvement of canonical notch-signaling in segmentation of the spider Cupiennius salei. Dev Biol 280(1):211–224

    Article  CAS  PubMed  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signaling requires ligand-induced proteolytic release of intracellular domain. Nature 393(6683):382–386

    Article  CAS  PubMed  Google Scholar 

  • Stollewerk A (2002) Recruitment of cell groups through delta/notch signaling during spider neurogenesis. Development 129(23):5339–5348

    Article  CAS  PubMed  Google Scholar 

  • Stollewerk A, Simpson P (2005) Evolution of early development of the nervous system: a comparison between arthropods. BioEssays 27(9):874–883

    Article  PubMed  Google Scholar 

  • Stollewerk A, Schoppmeier M, Damen WG (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423(6942):863–865

    Article  CAS  PubMed  Google Scholar 

  • Takke C, Campos-Ortega JA (1999) Her1, a zebrafish pair-rule like gene, acts downstream of notch signaling to control somite development. Development 126(13):3005–3014

    CAS  PubMed  Google Scholar 

  • Tautz D (2004) Segmentation. Dev Cell 7(3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Tomancak P, Berman BP, Beaton A, Weiszmann R, Kwan E, Hartenstein V, Celniker SE, Rubin GM (2007) Global analysis of patterns of gene expression during drosophila embryogenesis. Genome Biol 8(7):R145

    Article  PubMed  Google Scholar 

  • Walters JW, Münoz C, Paaby AB, Dinardo S (2005) Serrate-notch signaling defines the scope of the initial denticle field by modulating EGFR activation. Dev Biol 286(2):415–426

    Article  CAS  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699

    CAS  PubMed  Google Scholar 

  • Wilson MJ, Dearden PK (2009) Tailless patterning functions are conserved in the honeybee even in the absence of torso signaling. Dev Biol 335(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Havler M, Dearden PK (2010) Giant, krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 339(1):200–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank N. Kenny, E. Duncan and S. Morgan for critical comments on this manuscript. We would also like to thank Betta Bees Research LTD for bee supply and support. This work was funded by a Royal Society of New Zealand Marsden Grant to PKD (UOO0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Dearden.

Additional information

Communicated by S. Roth

MJW carried out RNAi injections and analysis, BHMcK cloned Am-Delta and Am-Notch. SvdH assisted with pharmacological experiments. PKD conceived the study, cloned Am-fringe, carried out pharmacological investigation, in-situ hybridization, and phylogenetics and wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, M.J., McKelvey, B.H., van der Heide, S. et al. Notch signaling does not regulate segmentation in the honeybee, Apis mellifera . Dev Genes Evol 220, 179–190 (2010). https://doi.org/10.1007/s00427-010-0340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0340-6

Keyword

Navigation