Skip to main content
Log in

Expression of Pax group III genes in the honeybee (Apis mellifera)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Pax group III genes are involved in a number of processes during insect segmentation. In Drosophila melanogaster, three genes, paired, gooseberry and gooseberry-neuro, regulate segmental patterning of the epidermis and nervous system. Paired acts as a pair-rule gene and gooseberry as a segment polarity gene. Studies of Pax group III genes in other insects have indicated that their expression is a good marker for understanding the underlying molecular mechanisms of segmentation. We have cloned three Pax group III genes from the honeybee (Apis mellifera) and examined their relationships to other insect Pax group III genes and their expression patterns during honeybee segmentation. The expression pattern of the honeybee homologue of paired is similar to that of paired in Drosophila, but its expression is modulated by anterior–posterior temporal patterning similar to the expression of Pax group III proteins in Tribolium. The expression of the other two Pax group III genes in the honeybee indicates that they also act in segmentation and nervous system development, as do these genes in other insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul S, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Beye M, Hartel S et al (2002) Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol Biol 11(6):527–532

    Article  PubMed  CAS  Google Scholar 

  • Binner P, Sander K (1997) Pair-rule patterning in the honeybee Apis mellifera; expression of even-skipped combines traits known from beetles and fruitfly. Dev Genes Evol 206:447–454

    Article  Google Scholar 

  • Breitling R, Gerber JK (2000) Origin of the paired domain. Dev Genes Evol 210(12):644–650

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Hilgenfeld RB et al (1994) The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl Acad Sci U S A 91(26):12922–12926

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Parrish JK et al (1997) Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mech Dev 61(1–2):165–173

    Article  PubMed  CAS  Google Scholar 

  • Chipman AD, Arthur W et al (2004) A double segment periodicity underlies segment generation in centipede development. Curr Biol 14(14):1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    Article  PubMed  CAS  Google Scholar 

  • Davis GK, Patel NH (2003) Playing by pair-rules? BioEssays 25(5):425–429

    Article  PubMed  CAS  Google Scholar 

  • Davis GK, Jaramillo CA et al (2001) Pax group III genes and the evolution of insect pair rule patterning. Development 128(18):3445–3458

    PubMed  CAS  Google Scholar 

  • Dearden P, Donly C et al (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129(23):5461–5472

    Article  PubMed  CAS  Google Scholar 

  • Duman-Scheel M, Li X et al (1997) Genetic separation of the neural and cuticular patterning functions of gooseberry. Development 124(15):2855–2865

    PubMed  CAS  Google Scholar 

  • DuPraw EJ (1967) The honeybee embryo. In: FH Wilt, NK Wessells (eds) Methods in developmental biology. Thomas Y Cromwell Company, New York, pp 183–217

    Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6

  • Fleig R (1990) Engrailed expression and body segmentation in the honeybee, Apis mellifera. Roux's Arch Dev Biol 198:467–473

    Article  Google Scholar 

  • Fleig R, Sander K (1986) Embryogenesis of the honeybee Apis mellifera L. (Hymenoptera: Apidae): an SEM study. Int J Inst Morphol Embryol 15(5):449–462

    Article  Google Scholar 

  • Gutjahr T, Frei E et al (1993a) Complex regulation of early paired expression: initial activation by gap genes and pattern modulation by pair-rule genes. Development 117:609–623

    PubMed  CAS  Google Scholar 

  • Gutjahr T, Patel NH et al (1993b) Analysis of the gooseberry locus in Drosophila embryos: gooseberry determines the cuticular pattern and activates gooseberry neuro. Development 118(1):21–31

    PubMed  CAS  Google Scholar 

  • Hennig W (1981) Insect phylogeny. Wiley, Bath

    Google Scholar 

  • Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53(3):506–514

    Article  PubMed  Google Scholar 

  • Krauss V, Pecyna M et al (2004) Phylogenetic mapping of intron positions: a case study of translation initiation factor eIF2γ. Mol Biol Evol 22:74–84

    Article  PubMed  CAS  Google Scholar 

  • Li X, Noll M (1993) Role of the gooseberry gene in Drosophila embryos: maintenance of wingless expression by a winglessgooseberry autoregulatory loop. EMBO J 12(12):4499–4509

    PubMed  CAS  Google Scholar 

  • Li X, Noll M (1994) Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367(6458):83–87

    Article  PubMed  CAS  Google Scholar 

  • Maderspacher F, Bucher G et al (1998) Pair-rule and gap gene mutants in the flour beetle Tribolium castenatum. Dev Genes Evol 208:558–568

    Article  PubMed  CAS  Google Scholar 

  • Makalowska I, Ryan JF et al (2001) GeneMachine: gene prediction and sequence annotation. Bioinformatics 17(9):843–844

    Article  PubMed  CAS  Google Scholar 

  • Nelson JA (1915) The embryology of the honeybee. Princeton University Press, Princeton

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801

    Article  PubMed  Google Scholar 

  • Osborne P, Dearden PK (2005) Non-radioactive in situ hybridisation to honeybees embryos and ovaries. Apidologie 36:113–118

    Article  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Patel NH, Kornberg TB et al (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107(2):201–213

    PubMed  CAS  Google Scholar 

  • Patel NH, Martín-Blanco E et al (1989b) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Patel NH, Condron BG et al (1994) Pair-rule expression patterns of even-skipped are found in both short and long germ beetles. Nature 367:429–434

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Lartillo N, Brinkman H (2005) Multigene analyses of Bilatarian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz M, Posakony JW (2004) GenePalette: a universal software tool for genome sequence visualization and analysis. Dev Biol 271(2):431–438

    Article  PubMed  CAS  Google Scholar 

  • Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238

    Article  Google Scholar 

  • Schoppmeier M, Damen WGM (2005) Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei. Evolut Develop 7(2):160–169

    Article  CAS  Google Scholar 

  • Schröder R, Jay DG et al (1999) Elimination of EVE protein by CALI in the short germ band insect Tribolium suggests a conserved pair-rule function for even skipped. Mech Dev 80(2):191–195

    Article  PubMed  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13(7):964–969

    CAS  Google Scholar 

  • Swofford DL (1998) PAUP* Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thompson JD, Higgins DG et al (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Walldorf U, Fleig R et al (1989) Comparison of homeobox-containing genes of the honeybee and Drosophila. Proc Natl Acad Sci U S A 86(24):9971–9975

    Article  PubMed  CAS  Google Scholar 

  • Walldorf U, Binner P et al (2000) Hox genes in the honey bee Apis mellifera. Dev Genes Evol 210(10):483–492

    Article  PubMed  CAS  Google Scholar 

  • Whiting MF (1998) Phylogenetic position of the Strepsiptera: review of molecular and morphological evidence. Int J Insect Morphol Embryol 27(1):53–60

    Article  Google Scholar 

  • Whiting MF (2002) Phylogeny of the holometabolous insect orders: molecular evidence. Zool Scr 31(1):3–15

    Article  Google Scholar 

  • Whiting MF, Carpenter JC et al (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46(1):1–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Elaine Emmerson for technical support and Melanie Havler, Hanna Leslie and Victoria Dearden for critical readings of this manuscript. The anti-engrailed monoclonal antibody developed by Corey Goodman was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. This work was supported by a University of Otago Research Grant and a Royal Society of New Zealand Marsden fund Grant (UOO0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Dearden.

Additional information

Communicated by Communicated by P. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, P.W., Dearden, P.K. Expression of Pax group III genes in the honeybee (Apis mellifera). Dev Genes Evol 215, 499–508 (2005). https://doi.org/10.1007/s00427-005-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0008-9

Keywords

Navigation