Skip to main content

Advertisement

Log in

The lamprey in evolutionary studies

  • Review
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate’s phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abalo XM, Villar-Cheda B, Anadon R, Rodicio MC (2005) Development of the dopamine-immunoreactive system in the central nervous system of the sea lamprey. Brain Res Bull 66:560–564

    Article  PubMed  CAS  Google Scholar 

  • Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310:1970–1973

    Article  PubMed  CAS  Google Scholar 

  • Alexandre P, Wassef M (2003) The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130:5331–5338

    Article  PubMed  CAS  Google Scholar 

  • Alifragis P, Liapi A, Parnavelas JG (2004) Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci 24:5643–5648

    Article  PubMed  CAS  Google Scholar 

  • Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 19:535–541

    Article  PubMed  CAS  Google Scholar 

  • Auclair F, Lund JP, Dubuc R (2004) Immunohistochemical distribution of tachykinins in the CNS of the lamprey Petromyzon marinus. J Comp Neurol 479:328–346

    Article  PubMed  CAS  Google Scholar 

  • Bardack D, Zangerl R (1968) First fossil lamprey: a record from the Pennsylvanian of Illinois. Science 162:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Beamish FWH, Potter IC (1975) The biology of the anadromous sea lamprey (Petromyzon marinus) in New Brunswick. J Zool 177:57–72

    Article  Google Scholar 

  • Butler AB, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, Hoboken

    Google Scholar 

  • Chang MM, Zhang J, Miao D (2006) A lamprey from the Cretaceous Jehol biota of China. Nature 441:972–974

    Article  PubMed  CAS  Google Scholar 

  • Cohn MJ (2002) Evolutionary biology: lamprey Hox genes and the origin of jaws. Nature 416:386–387

    Article  PubMed  CAS  Google Scholar 

  • Damas H (1944) Recherches sur le développement de Lampetra fluviatilis L.: contribution à l'étude de la Céphalogenèse des Vertébrés. Arch Biol Paris 55:1–289

    Google Scholar 

  • de Arriba Mdel C, Pombal MA (2007) Afferent connections of the optic tectum in lampreys: an experimental study. Brain Behav Evol 69:37–68

    Article  PubMed  Google Scholar 

  • de Miguel E, Rodicio MC, Anadon R (1990) Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol 302:529–542

    Article  PubMed  Google Scholar 

  • Del Carmen De Andres M, Anadon R, Manso MJ, Gonzalez MJ (2002) Distribution of thyrotropin-releasing hormone immunoreactivity in the brain of larval and adult sea lampreys, Petromyzon marinus L. J Comp Neurol 453:323–335

    Article  PubMed  CAS  Google Scholar 

  • Delarbre C, Escriva H, Gallut C, Barriel V, Kourilsky P, Janvier P, Laudet V, Gachelin G (2000) The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: bearings on the phylogeny of cyclostomes. Mol Biol Evol 17:519–529

    PubMed  CAS  Google Scholar 

  • Gage SH, Gage-Day M (1927) The anti-coagulating action of the secretion of the buccal glands of the lampreys (Petromyzon, Lampetra and Entosphenus). Science 66:82–84

    Article  Google Scholar 

  • Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G (2002) Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol 22:184–192

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  PubMed  CAS  Google Scholar 

  • Derobert Y, Baratte B, Lepage M, Mazan S (2002) Pax6 expression patterns in Lampetra fluviatilis and Scyliorhinus canicula embryos suggest highly conserved roles in the early regionalization of the vertebrate brain. Brain Res Bull 57:277–280

    Article  PubMed  CAS  Google Scholar 

  • Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci USA 103:8727–8732

    Article  PubMed  CAS  Google Scholar 

  • Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361:129–134

    Article  Google Scholar 

  • Fried C, Prohaska SJ, Stadler PF (2003) Independent Hox-cluster duplications in lampreys. J Exp Zoolog B Mol Dev Evol 299:18–25

    PubMed  Google Scholar 

  • Frontini A, Zaidi AU, Hua H, Wolak TP, Greer CA, Kafitz KW, Li W, Zielinski BS (2003) Glomerular territories in the olfactory bulb from the larval stage of the sea lamprey Petromyzon marinus. J Comp Neurol 465:27–37

    Article  PubMed  Google Scholar 

  • Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SF, Kuruppu S, Fung K, Hedges SB, Richardson MK et al (2006) Early evolution of the venom system in lizards and snakes. Nature 439:584–588

    Article  PubMed  CAS  Google Scholar 

  • Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443:981–984

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MJ, Yanez J Anadon R (1999) Afferent and efferent connections of the torus semicircularis in the sea lamprey: an experimental study. Brain Res 826:83–94

    Article  PubMed  CAS  Google Scholar 

  • Gravel J, Brocard F, Gariepy JF, Lund JP, Dubuc R (2007) Modulation of respiratory activity by locomotion in lampreys. Neuroscience 144:1120–1132

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Hellgren Kotaleski J (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165:221–234

    Article  PubMed  Google Scholar 

  • Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res Brain Res Rev 40:92–106

    Article  PubMed  Google Scholar 

  • Hammond KL, Whitfield TT (2006) The developing lamprey ear closely resembles the zebrafish otic vesicle: otx1 expression can account for all major patterning differences. Development 133:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Hardisty MW, Potter IC (1971a) The Biology of Lampreys. Academic, London

    Google Scholar 

  • Hardisty MW, Potter IC (1971b) The general biology of adult lampreys. In: Hardisty MW, Potter IC (eds) The biology of lampreys. vol. 1. Academic, London, pp 127–206

    Google Scholar 

  • Horigome N, Myojin M, Ueki T, Hirano S, Aizawa S, Kuratani S (1999) Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev Biol 207:287–308

    Article  PubMed  CAS  Google Scholar 

  • Imai KS, Satoh N, Satou Y (2002) Region specific gene expressions in the central nervous system of the ascidian embryo. Gene Expr Patterns 2:319–321

    Article  PubMed  CAS  Google Scholar 

  • Irvine SQ, Carr JL, Bailey WJ, Kawasaki K, Shimizu N, Amemiya CT, Ruddle FH (2002) Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. J Exp Zool 294:47–62

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Mita M, Takahashi Y, Matsushima A, Watanabe YG, Hirano S, Odani S (2007) Novel cysteine-rich secretory protein in the buccal gland secretion of the parasitic lamprey, Lethenteron japonicum. Biochem Biophys Res Commun 358:35–40

    Article  PubMed  CAS  Google Scholar 

  • Janvier P, Lund R (1983) Hardistiella montanensis (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys. J Vertebr Paleontol. 2:407–413

    Article  Google Scholar 

  • Janvier P (2006) Palaeontology: modern look for ancient lamprey. Nature 443:921–924

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR, Strickler AG, Yamamoto Y (2004) Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431:696–699

    Article  PubMed  CAS  Google Scholar 

  • Joly JS, Osorio J, Alunni A, Auger H, Kano S, Retaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524

    Article  PubMed  Google Scholar 

  • Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552

    Article  PubMed  CAS  Google Scholar 

  • Kozmik Z, Holland ND, Kalousova A, Paces J, Schubert M, Holland LZ (1999) Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126:1295–304

    PubMed  CAS  Google Scholar 

  • Kuraku S, Kuratani S (2006) Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoolog Sci 23:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Kuratani S (2004) Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. J Anat 205:335–347

    Article  PubMed  CAS  Google Scholar 

  • Kuratani S (2005a) Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: morphological and embryological significance of the premandibular-mandibular boundary. Zoology (Jena) 108:13–25

    Google Scholar 

  • Kuratani S (2005b) Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. J Anat 207:489–499

    Article  PubMed  Google Scholar 

  • Kuratani S, Horigome N, Hirano S (1999) Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev Biol 210:381–400

    Article  PubMed  CAS  Google Scholar 

  • Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234:824–834

    Article  PubMed  Google Scholar 

  • Kusakabe R, Tochinai S, Kuratani S (2003) Expression of foreign genes in lamprey embryos: an approach to study evolutionary changes in gene regulation. J Exp Zoolog B Mol Dev Evol 296:87–97

    PubMed  Google Scholar 

  • Laframboise AJ, Ren X, Chang S, Dubuc R, Zielinski BS (2007) Olfactory sensory neurons in the sea lamprey display polymorphisms. Neurosci Lett 414:277–281

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139:873–887

    PubMed  CAS  Google Scholar 

  • Lim Y, Golden JA (2007) Patterning the developing diencephalon. Brain Res Rev 53:17–26

    Article  PubMed  Google Scholar 

  • Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 5:866–879

    Article  PubMed  CAS  Google Scholar 

  • Lowery LA, Sive H (2004) Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev 121:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Mallatt J, Sullivan J (1998) 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol 15:1706–18

    PubMed  CAS  Google Scholar 

  • Mallatt J, Winchell CJ (2007) Ribosomal RNA genes and deuterostome phylogeny revisite: more cyclostomes, elasmobranchs, reptiles and a brittle star. Mol Phylogenet and Evol 43:1005–1022

    Article  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    Article  PubMed  CAS  Google Scholar 

  • McCauley DW, Bronner-Fraser M (2002) Conservation of Pax gene expression in ectodermal placodes of the lamprey. Gene 287:29–39

    Article  Google Scholar 

  • McCauley DW, Bronner-Fraser M (2003) Neural crest contributions to the lamprey head. Development 130:317–337

    Article  CAS  Google Scholar 

  • McCauley DW, ronner-Fraser M (2004) Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene. Evol Dev 6:11–22

    Google Scholar 

  • McCauley DW, Bronner-Fraser M (2006) Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 441:750–752

    Article  PubMed  CAS  Google Scholar 

  • McClellan AD (1994) Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations. J Neurophysiol 72:847–860

    PubMed  CAS  Google Scholar 

  • Melendez-Ferro M, Perez-Costas E, Villar-Cheda B, Abalo XM, Rodriguez-Munoz R, Rodicio MC, Anadon R (2002a) Ontogeny of gamma-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey. J Comp Neurol 446:360–376

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Ferro M, Perez-Costas E, Villar-Cheda B, Rodriguez-Munoz R, Anadon R, Rodicio MC (2003) Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey. J Comp Neurol 464:17–35

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Ferro M Villar-Cheda B, Manoel Abalo X, Perez-Costas E, Rodriguez-Munoz R, Degrip WJ, Yanez J, Rodicio MC, Anadon R (2002b) Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study. J Comp Neurol 442:250–265

    Article  Google Scholar 

  • Menard A, Auclair F, Bourcier-Lucas C, Grillner S, Dubuc R (2007) Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus. J Comp Neurol 501:260–273

    Article  PubMed  CAS  Google Scholar 

  • Meulemans D, Bronner-Fraser M (2002) Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns. Development 129:4953–4962

    PubMed  CAS  Google Scholar 

  • Meulemans D, McCauley D, Bronner-Fraser M (2003) Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution. Dev Biol 264:430–442

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128:3521–3531

    PubMed  CAS  Google Scholar 

  • Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131:983–995

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Uchida K, Rijli FM, Kuratani S (2005) Evolution of the brain developmental plan: Insights from agnathans. Dev Biol 280:249–259

    Article  PubMed  CAS  Google Scholar 

  • Myojin M, Ueki T, Sugahara F, Murakami Y, Shigetani Y, Aizawa S, Hirano S, Kuratani S (2001) Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. J Exp Zool 291:68–84

    Article  PubMed  CAS  Google Scholar 

  • Neidert AH, Virupannavar V, Hooker GW, Langeland JA (2001) Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A 98:1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Nicholson C (1998) Lampreys, Petromyzontoidea. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. vol. 1. Springer-Verlag, Berlin, pp 397–495

    Google Scholar 

  • Ogasawara M, Shigetani Y, Hirano S, Satoh N, Kuratani S (2000) Pax1/Pax9-related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev Biol 223:399–410

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara M, Shigetani Y, Suzuki S, Kuratani S, Satoh N (2001) Expression of thyroid transcription factor-1 (TTF-1) gene in the ventral forebrain and endostyle of the agnathan vertebrate, Lampetra japonica. Genesis 30:51–58

    Article  PubMed  CAS  Google Scholar 

  • Or J (2006) A control system for a flexible spine belly-dancing humanoid. Artif Life 12:63–87

    Article  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Osorio J, Mazan S Retaux S (2005) Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 288:100–112

    Article  PubMed  CAS  Google Scholar 

  • Osorio J, Megias M, Pombal MA, Retaux S (2006) Dynamic expression of the LIM-homeodomain gene Lhx15 through larval brain development of the sea lamprey (Petromyzon marinus). Gene Expr Patterns 6:873–878

    Article  PubMed  CAS  Google Scholar 

  • Ota KG, Kuraku S, Kuratani S (2007) Hagfish embryology with reference to the evolution of the neural crest. Nature 446:672–675

    Article  PubMed  CAS  Google Scholar 

  • Ota KG, Kuratani S (2006) The history of scientific endeavors towards understanding hagfish embryology. Zoolog Sci 23:403–418

    Article  PubMed  Google Scholar 

  • Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  PubMed  CAS  Google Scholar 

  • Pancer Z, Saha NR, Kasamatsu J, Suzuki T, Amemiya CT, Kasahara M, Cooper MD (2005) Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci U S A 102:9224–9229

    Article  PubMed  CAS  Google Scholar 

  • Perez-Costas E, Melendez-Ferro M, Perez-Garcia CG, Caruncho HJ, Rodicio MC (2004) Reelin immunoreactivity in the adult sea lamprey brain. J Chem Neuroanat 27:7–21

    Article  PubMed  CAS  Google Scholar 

  • Perez-Costas E, Melendez-Ferro M, Santos Y, Anadon R, Rodicio MC, Caruncho HJ (2002) Reelin immunoreactivity in the larval sea lamprey brain. J Chem Neuroanat 23:211–221

    Article  PubMed  CAS  Google Scholar 

  • Pflieger JF, Dubuc R (2004) Vestibulo-reticular projections in adult lamprey: their role in locomotion. Neuroscience 129:817–829

    Article  PubMed  CAS  Google Scholar 

  • Piavis GW (1971) Embryology. In: Hardisty MW, Potter IC (eds) The biology of Lampreys. vol. 1. Academic, London, pp 361–400

    Google Scholar 

  • Pierre-Simons J, Reperant J, Mahouche M, Ward R (2002) Development of tyrosine hydroxylase-immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis. J Comp Neurol 447:163–176

    Article  PubMed  CAS  Google Scholar 

  • Pombal MA, El Manira A, Grillner S (1997a) Afferents of the lamprey striatum with special reference to the dopaminergic system: a combined tracing and immunohistochemical study. J Comp Neurol 386:71–91

    Article  PubMed  CAS  Google Scholar 

  • Pombal MA, El Manira A, Grillner S (1997b) Organization of the lamprey striatum—transmitters and projections. Brain Res 766:249–254

    Article  PubMed  CAS  Google Scholar 

  • Pombal MA, Marin O, Gonzalez A (2001) Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. J Comp Neurol 431:105–126

    Article  PubMed  CAS  Google Scholar 

  • Pombal MA, Puelles L (1999) Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol 414:391–422

    Article  PubMed  CAS  Google Scholar 

  • Robertson B, Auclair F, Menard A, Grillner S, Dubuc R (2007) GABA distribution in lamprey is phylogenetically conserved. J Comp Neurol 503:47–63

    Article  PubMed  CAS  Google Scholar 

  • Robertson B, Saitoh K, Menard A, Grillner S (2006) Afferents of the lamprey optic tectum with special reference to the GABA input: combined tracing and immunohistochemical study. J Comp Neurol 499:106–119

    Article  PubMed  CAS  Google Scholar 

  • Root AR, Nucci NV, Sanford JD, Rubin BS, Trudeau VL, Sower SA (2005) In situ characterization of gonadotropin-releasing hormone-I, -III, and glutamic acid decarboxylase expression in the brain of the sea lamprey, Petromyzon marinus. Brain Behav Evol 65:60–70

    Article  PubMed  Google Scholar 

  • Rovainen CM (1996) Feeding and breathing in lampreys. Brain Behav Evol 48:297–305

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    Article  PubMed  CAS  Google Scholar 

  • Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13:405–420

    Article  PubMed  CAS  Google Scholar 

  • Shigetani Y, Sugahara F, Kawakami Y, Murakami Y, Hirano S, Kuratani S (2002) Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296:1316–1349

    Article  PubMed  CAS  Google Scholar 

  • Shigetani Y, Sugahara F, Kuratani S (2005) A new evolutionary scenario for the vertebrate jaw. Bioessays 27:331–338

    Article  PubMed  CAS  Google Scholar 

  • Shimeld SM (1999) The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol 209:40–47

    Article  PubMed  CAS  Google Scholar 

  • Spokony RF, Aoki Y, Saint-Germain N, Magner-Fink E, Saint-Jeannet JP (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129:421–432

    PubMed  CAS  Google Scholar 

  • Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP (2004) Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 32:686–694

    Article  PubMed  CAS  Google Scholar 

  • Stock DW, Whitt GS (1992) Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257:787–789

    Article  PubMed  CAS  Google Scholar 

  • Tahara Y (1988) Normal stages of development in the lamprey, Lampetra reissneri (Dybowski). Zoolog Sci 5:109–118

    Google Scholar 

  • Takatori N, Satou Y, Satoh N (2002) Expression of hedgehog genes in Ciona intestinalis embryos. Mech Dev 116:235–238

    Article  PubMed  CAS  Google Scholar 

  • Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev Biol 308:606–620

    Article  PubMed  CAS  Google Scholar 

  • Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Evolutionary biology: Hox genes and the evolution of jaws. Nature 429:262–263

    Article  CAS  Google Scholar 

  • Tomsa JM Langeland JA (1999) Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol 207:26–37

    Article  Google Scholar 

  • Tsuneki K (1986) A survey of occurrence of about 17 circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470

    PubMed  CAS  Google Scholar 

  • Uchida K, Murakami Y, Kuraku S, Hirano S, Kuratani S (2003) Development of the adenohypophysis in the lamprey: evolution of epigenetic patterning programs in organogenesis. J Exp Zoolog B Mol Dev Evol 300:32–47

    PubMed  Google Scholar 

  • Ueki T, Kuratani S, Hirano S, Aizawa S (1998) Otx cognates in a lamprey, Lampetra japonica. Dev Genes Evol 208:223–228

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC et al (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5:e101

    Article  PubMed  CAS  Google Scholar 

  • Vidal Pizarro I, Swain GP, Selzer ME (2004) Cell proliferation in the lamprey central nervous system. J Comp Neurol 469:298–310

    Article  PubMed  Google Scholar 

  • Villar-Cheda B, Perez-Costas E, Melendez-Ferro M, Abalo XM, Rodriguez-Munoz R, Anadon R, Rodicio MC (2006) Cell proliferation in the forebrain and midbrain of the sea lamprey. J Comp Neurol 494:986–1006

    Article  PubMed  Google Scholar 

  • Villar-Cheda B, Perez-Costas E, Melendez-Ferro M, Manoel Abalo X, Rodriguez-Munoz R, Anadon R, Celina Rodicio M (2002) Proliferating cell nuclear antigen (PCNA) immunoreactivity and development of the pineal complex and habenula of the sea lamprey. Brain Res Bull 57:285–287

    Article  PubMed  CAS  Google Scholar 

  • Weigle C, Northcutt RG (1999) The chemoarchitecture of the forebrain of lampreys: evolutionary implications by comparisons with gnathostomes. Eur J Morphol 37:122–125

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 282:1–13

    Article  PubMed  CAS  Google Scholar 

  • Wright GM, Keeley FW, Robson P (2001) The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell Tissue Res 304:165–174

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Knipp S (2000) Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anat Embryol (Berl) 202:385–400

    Article  CAS  Google Scholar 

  • Wullimann MF, Puelles L (1999) Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat Embryol (Berl) 199:329–348

    Article  CAS  Google Scholar 

  • Wullimann MF, Vernier P (2006) Evolution of the nervous system in fishes. In: Kaas J (ed) Evolution of Nervous Systems. Academic, London

    Google Scholar 

  • Xiao R, Li QW, Perrett S, He RQ (2007) Characterisation of the fibrinogenolytic properties of the buccal gland secretion from Lampetra japonica. Biochimie 89:383–392

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Cohn MJ (2006) Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A 103:16829–16833

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Miyamoto MM, Cohn MJ (2006) Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proc Natl Acad Sci U S A 103:3180–3185

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein JL, Westphal H (2003) The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci USA 100:9005–9010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work on lamprey is supported by grants from the Scientific Interest Group (GIS) “Génomique Marine” and from the ANR-Neuro “Midline” to SR. We wish to thank Sylvie Mazan as the coordinator of the GIS collaborative grant, and for long term input and fruitful interactions on lamprey evo-devo. We also thank Didier Casane, Claude Thermes, Yves Daubenton, Marc Ekker and Kyle Martin for discussions and collaborations. A special thanks goes to Franck Bourrat, who shared with us his beautiful histological preparations. JO was supported by a doctoral fellowship from the Foundation for Science and Technology of the Portuguese Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Rétaux.

Additional information

Communicated by R. J. Sommer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osório, J., Rétaux, S. The lamprey in evolutionary studies. Dev Genes Evol 218, 221–235 (2008). https://doi.org/10.1007/s00427-008-0208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0208-1

Keywords

Navigation