Skip to main content
Log in

Lamprey as Laboratory Model for Study of Molecular Bases of Ontogenesis and Evolutionary History of Vertebrata

  • LAMPREYS (PETROMYZONTIDAE)
  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The basic knowledge about the development and formation of the body plan of vertebrates (Vertebrata) was obtained while working with traditional and generally accepted model objects, such as the embryos of mice (Muridae), chickens (Gallus), bony fish (Teleostei), clawed frogs (Xenopus). At the same time, for understanding the evolutionary history of vertebrates, studies of so-called “non-model” objects are of particular value. These animals represent important phylogenetic branches on the evolutionary tree of vertebrates, but do not possess a set of qualities that make them convenient for laboratory work. First of all, such objects include the most ancient living representatives of the taxa, basally diverged from the common evolutionary trunk. These are cyclostomes (Cyclostomata) in the case of vertebrates in general, cartilaginous fish (Chondrichthyes) in the case of gnathostomes (Gnathostomata) and bone ganoids (Holostei) as representatives of new-finned fish (Neopterygii). The research value of these ancient groups lies in the fact that morphological features that are later characteristic of the entire taxon appear in their evolution for the first time, for example, the telencephalon and neural crest cells in cyclostomes, paired fins and the jaws in cartilaginous fish. Representatives of these groups provide an opportunity to study the evolutionary premieres of individual structures and features and mechanisms that ensured their emergence. This article presents an overview of studies of whole-genome duplications at the early stages of vertebrate evolution and the emergence of a unique forebrain region, the telencephalon, which we studied on lampreys, as the most ancient representatives of vertebrates available for laboratory research today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bayramov, A.V., Martynova, N.Yu., Eroshkin, F.M., et al., The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development, Mech. Devel., 2004, vol. 121, no. 12, pp. 1425–1441. https://doi.org/10.1016/j.mod.2004.08.002

    Article  CAS  Google Scholar 

  2. Bayramov, A.V., Eroshkin, F.M., Martynova, N.Y., et al., Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling, Development, 2011, vol. 138, no. 6, pp. 5345–5356. https://doi.org/10.1242/dev.068908

    Article  CAS  Google Scholar 

  3. Bayramov, A.V., Ermakova, G.V., Eroshkin, F.M., et al., The presence of the Anf/Hesx1 homeobox in lampreys indicates that it may play important role in telencephalon emergence, Sci. Rep., 2016, vol. 6, no. 1, art. ID 39849. https://doi.org/10.1038/srep39849

    Article  CAS  Google Scholar 

  4. Bayramov, A.V., Ermakova, G.V., Eroshkin, F.M., et al., Finding of the homeobox gene Anf in lamprey Lethenteron camtschaticum support the hypothesis that emergence of telencephalon in vertebrates evolution was due to the advent of Anf genes, Russ. J. Devel. Biol., 2017, vol. 48, no. 4, pp. 241–251. https://doi.org/10.7868/S0475145017040024

    Article  CAS  Google Scholar 

  5. Bayramov, A.V., Ermakova, G.V., Kucheryavyy, A.V., and Zaraisky, A.G., Lampreys—“living fossils” in researches of early development and regeneration of the vertebrates, Russ. J. Devel., 2018, vol. 49, no. 6, pp. 327–338. https://doi.org/10.1134/S1062360418080015

    Article  Google Scholar 

  6. Bayramov, A.V., Ermakova, G.V., and Zaraisky, A.G., Genetic mechanisms of the early development of the telencephalon, a unique segment of the vertebrate central nervous system, as reflecting its emergence and evolution, Russ. J. Devel., 2020, vol. 51, no. 3, pp. 162–175. https://doi.org/10.1134/S1062360420030054

    Article  Google Scholar 

  7. Bayramov, A.V., Ermakova, G.V., Kuchryavyy, A.V., and Zaraisky A.G., Genome duplications as the basis of vertebrates’ evolutionary success, Russ. J. Devel., 2021, vol. 52, no. 3, pp. 141–163. https://doi.org/10.1134/S1062360421030024

    Article  Google Scholar 

  8. Braasch, I., Gehrke, A.R., Smith, J.J., et al., The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons, Nat. Genet., 2015, vol. 47, no. 4, pp. 427–437. https://doi.org/10.1038/ng.3526

    Article  CAS  Google Scholar 

  9. Cardoso, J.C.R., Bergqvist, C.A., Félix, R.C., et al., Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages, J. Mol. Endocrinol., 2016, vol. 57, no. 1, pp. 73–86. https://doi.org/10.1530/JME-16-0051

    Article  CAS  Google Scholar 

  10. Cardoso, J.C.R., Bergqvist, C.A., and Larhammar, D., Corticotropin-releasing hormone (CRH) gene family duplications in lampreys correlate with two early vertebrate genome doublings, Front. Neurosci., 2020, vol. 14, art. ID 672. https://doi.org/10.3389/fnins.2020.00672

    Article  Google Scholar 

  11. Carroll, S.B., Homeotic genes and the evolution of arthropods and chordates, Nature, 1995, vol. 376, no. 6540, pp. 479–485. https://doi.org/10.1038/376479a0

    Article  CAS  Google Scholar 

  12. Cohen, A.H., Mackler, S.A., and Selzer, M.E., Functional regeneration following spinal transection demonstrated in the isolated spinal cord of the larval Sea lamprey, Proc. Natl. Acad. Sci., 1986, vol. 83, no. 8, pp. 2763–2766. https://doi.org/10.1073/pnas.83.8.2763

    Article  CAS  Google Scholar 

  13. Dahn, R.D., Davis, M.C., Pappano, W.N., and Shubin, N.H., Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning, Nature, 2007, vol. 445, no. 7125, pp. 311–314. https://doi.org/10.1038/nature05436

    Article  CAS  Google Scholar 

  14. Dale, L. and Slack, J.M.W., Regional specification within the mesoderm of early embryos of Xenopus laevis, Development, 1987, vol. 100, no. 2, pp. 279–295. https://doi.org/10.1242/dev.100.2.279

    Article  CAS  Google Scholar 

  15. Danesin, C. and Houart, C., A Fox stops the Wnt: implications for forebrain development and diseases, Curr. Opin. Genet. Dev., 2012, vol. 22, no. 4, pp. 323–330. https://doi.org/10.1016/j.gde.2012.05.001

    Article  CAS  Google Scholar 

  16. Danesin, C., Peres, J.N., Johansson, M., et al., Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1, Dev Cell., 2009, vol. 16, no. 4, pp. 576–587. https://doi.org/10.1016/j.devcel.2009.03.007

    Article  CAS  Google Scholar 

  17. Donoghue, P.C. and Keating, J.N., Early vertebrate evolution, Palaeontology, 2014, vol. 57, no. 5, pp. 879–893. https://doi.org/10.1111/pala.12125

    Article  Google Scholar 

  18. Donoghue, P.C.J. and Purnell, M.A., Genome duplication, extinction and vertebrate evolution, Trends Ecol. Evol., 2005, vol. 20, no. 6, pp. 312–319. https://doi.org/10.1016/j.tree.2005.04.008

    Article  Google Scholar 

  19. Ermakova, G.V., Alexandrova, E.M., Kazanskaya, O.V., et al., The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo, Development, 1999, vol. 126, no. 20, pp. 4513–4523. https://doi.org/10.1242/dev.126.20.4513

    Article  CAS  Google Scholar 

  20. Ermakova, G.V., Solovieva, E.A., Martynova, N.Y., et al., The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions, Devel. Biol., 2007, vol. 307, no. 2, pp. 483–497. https://doi.org/10.1016/j.ydbio.2007.03.524

    Article  CAS  Google Scholar 

  21. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., and Bayramov, A.V., The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates, Gene Expr. Patterns, 2019, vol. 28, no. 34, art. ID 119073. https://doi.org/10.1016/j.gep.2019.119073

    Article  CAS  Google Scholar 

  22. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., and Bayramov, A.V., Discovery of four Noggin genes in lampreys suggests two rounds of ancient genome duplication, Commun. Biol., 2020a, vol. 3, no. 1, art. ID 532. https://doi.org/10.1038/s42003-020-01234-3

    Article  CAS  Google Scholar 

  23. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., and Bayramov, A.V., Heterochrony of the expression of Lanf and Foxg1 in lamprey confirms the appearance of the telencephalon as an evolutionarily young superstructure in the central nervous system of vertebrates, Russ. J. Devel. Biol., 2020b, vol. 51, no. 4, pp. 246–254. https://doi.org/10.1134/S1062360420040049

    Article  CAS  Google Scholar 

  24. Ermakova, G.V., Kucheryavyy, A.V., Eroshkin, F.M., et al., Study of the early telencephalon genes of cyclostomes as a way to restoring the evolutionary history of this unique part of the central nervous system of vertebrates, Paleontol. J., 2021a, vol. 55, no. 7, pp. 38–51. https://doi.org/10.1134/S0031030121070030

    Article  Google Scholar 

  25. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., and Bayramov, A.V., Comparative analysis of expression patterns of genes of the Noggin family at early stages of development of the head structures of the European river lamprey Lampetra fluviatilis, Russ. J. Devel. Biol., 2021b, vol. 52, no. 1, pp. 33–41. https://doi.org/10.1134/S1062360421010033

    Article  CAS  Google Scholar 

  26. Eroshkin, F., Kazanskaya, O., Martynova, N., et al., Characterization of cis-regulatory elements of the homeobox gene Xanf-1, Gene, 2002, vol. 285, no. 1–2, pp. 279–286. https://doi.org/10.1016/s0378-1119(02)00393-1

    Article  CAS  Google Scholar 

  27. Eroshkin, F.M., Ermakova, G.V., Bayramov, A.V., et al., Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis, Gene Expr. Patterns, 2006. vol. 6, no. 2, p. 180–186. https://doi.org/10.1016/j.modgep.2005.06.007

    Article  CAS  Google Scholar 

  28. Evans, T.M., Janvier, P., and Docker, M.F., The evolution of lamprey (Petromyzontida) life history and the origin of metamorphosis, Rev. Fish Biol. Fish., 2018, vol. 28, no. 4, pp. 825–838. https://doi.org/10.1007/s11160-018-9536-z

    Article  Google Scholar 

  29. Feinberg, T.E. and Mallatt, J., The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago, Front. Psychol., 2013, vol. 4, art. ID 667. https://doi.org/10.3389/fpsyg.2013.00667

    Article  Google Scholar 

  30. Fletcher, R.B., Watson, A.L., and Harland, R.M., Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod, Gene Expr. Patterns, 2004, vol. 5, no. 2, pp. 225–230. https://doi.org/10.1016/j.modgep.2004.08.001

    Article  CAS  Google Scholar 

  31. Fritzsch, B., Similarities and differences in lancelet and craniate nervous systems, Isr. J. Zool., 1996, vol. 42, Suppl. 1, pp. S147–S160. https://www.tandfonline.com/doi/abs/ 10.1080/00212210.1996.10688878

    Google Scholar 

  32. Gee, H., Across the Bridge: Understanding the Origin of the Vertebrates, Chicago: Univ. Chicago Press, 2018.

    Book  Google Scholar 

  33. Gess, R.W., Coates, M.I., and Rubidge, B.S., A lamprey from the Devonian period of South Africa, Nature, 2006, vol. 443, no. 7114, pp. 981–984. https://doi.org/10.1038/nature05150

    Article  CAS  Google Scholar 

  34. Gilbert, S.F., Developmental Biology, Sunderland: Sinauer Associates, 2006.

    Google Scholar 

  35. Graham, A., Papalopulu, N., and Krumlauf, R., The murine and Drosophila homeobox gene complexes have common features of organization and expression, Cell, 1989, vol. 57, no. 3, pp. 367–378. https://doi.org/10.1016/0092-8674(89)90912-4

    Article  CAS  Google Scholar 

  36. Green, S.A. and Bronner, M.E., The lamprey: A jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits, Differentiation, 2014, vol. 87, no. 1–2, pp. 44–51. https://doi.org/10.1016/j.diff.2014.02.001

    Article  CAS  Google Scholar 

  37. Heimberg, A.M., Cowper-Sal-Lari, R., Sémon M., et al., microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 45, pp. 19379–19383. https://doi.org/10.1073/pnas.1010350107

    Article  Google Scholar 

  38. Herman, P.E., Papatheodorou, A., Bryant, S.A., et al. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys, Sci. Rep., 2018, vol. 8, no. 1. art. ID 742. https://doi.org/10.1038/s41598-017-18757-1

    Article  CAS  Google Scholar 

  39. Holland, L.Z. and Ocampo Daza, D., A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution?, Genome Biol., 2018, vol. 19, no. 1, art. ID 209. https://doi.org/10.1186/s13059-018-1592-0

    Article  CAS  Google Scholar 

  40. Holland, L.Z. and Short, S., Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain, Brain Behav. Evol., 2008, vol. 72, pp. 91–105. https://doi.org/10.1159/000151470

    Article  Google Scholar 

  41. Hume, J.B., Adams, C.E., Mable, B., and Bean, C, Post-zygotic hybrid viability in sympatric species pairs: a case study from European lampreys, Biol. J. Linn. Soc., 2013, vol. 108, no. 2, pp. 378–383. https://doi.org/10.1111/j.1095-8312.2012.02007.x

    Article  Google Scholar 

  42. Irimia, M., Pineiro, C., Maeso, I., et al., Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer, Evodevo, 2010, vol. 1, no. 1, art. ID 7. https://doi.org/10.1186/2041-9139-1-7

    Article  CAS  Google Scholar 

  43. Janvier, P., The dawn of the vertebrates: characters versus common ascent in the rise of current vertebrate phylogenies, Palaeontology, 1996, vol. 39, Part 2, pp. 259–287.

    Google Scholar 

  44. Janvier, P., Vertebrate characters and the Cambrian vertebrates, C.R. Palevol., 2003, vol. 2, no. 6–7, pp. 523–531. https://doi.org/10.1016/j.crpv.2003.09.002

    Article  Google Scholar 

  45. Janvier, P., Modern look for ancient lamprey, Nature, 2006, vol. 433, no. 7114, pp. 921–924. https://doi.org/10.1038/443921a

    Article  CAS  Google Scholar 

  46. Janvier, P., Facts and fancies about early fossil chordates and vertebrates, Nature, 2015, vol. 520, no. 7548, pp. 483–489. https://doi.org/10.1038/nature14437

    Article  CAS  Google Scholar 

  47. Klimova, L. and Kozmik, Z., Stage-dependent requirement of neuroretinal Pax6 for lens and retina development, Development, 2014, vol. 141, no. 6, pp. 1292–1302. https://doi.org/10.1242/dev.098822

    Article  CAS  Google Scholar 

  48. Kortüm, F., Das, S., Flindt, M., et al., The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis, J. Med. Genet., 2011, vol. 8, no. 6, pp. 396–406. https://doi.org/10.1136/jmg.2010.087528

    Article  CAS  Google Scholar 

  49. Kumamoto, T. and Hanashima, C., Evolutionary conservation and conversion of Foxg1 function in brain development, Devel. Growth Differ., 2017, vol. 59, no. 4, pp. 258–269. https://doi.org/10.1111/dgd.12367

    Article  Google Scholar 

  50. Kuraku, S. and Kuratani, S., Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences, Zool. Sci., 2006, vol. 23, no. 12, pp. 1053–1064. https://doi.org/10.2108/zsj.23.1053

    Article  CAS  Google Scholar 

  51. Kuratani, S. and Ota, K.G., Hagfish (Cyclostomata, Vertebrata): searching for the ancestral developmental plan of vertebrates, BioEssays, 2008, vol. 30, no. 2, pp. 167–172. https://doi.org/10.1002/bies.20701

    Article  Google Scholar 

  52. Kuratani, S., Nobusada, Y., Horigome, N., et al., Embryology of the lamprey and evolution of the vertebrate jaws: insights from molecular and developmental perspectives, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 2001, vol. 356, no. 1414, pp. 1615–1632. https://doi.org/10.1098/rstb.2001.0976

    Article  CAS  Google Scholar 

  53. Lamb, T.M., Knecht, A.K., Smith, W.C., et al., Neural induction by secreted polypeptide noggin, Science, 1993, vol. 262, no. 5134, pp. 713–718. https://doi.org/10.1126/science.8235591

    Article  CAS  Google Scholar 

  54. Martynova, N.Yu., Eroshkin, F.M., Ermakova, G.V., et al., Patterning the forebrain: FoxA4a/Pintallavis and Xvent-2 determine the posterior limit of the Xanf-1 expression in the neural plate, Development, 2004, vol. 131, no. 10, pp. 2329–2338. https://doi.org/10.1242/dev.01133

    Article  CAS  Google Scholar 

  55. Martynoga, B., Morrison, H., Price, D.J., et al., Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis, Devel. Biol., 2005, vol. 283, no. 1, pp. 113–127. https://doi.org/10.1016/j.ydbio.2005.04.005

    Article  CAS  Google Scholar 

  56. McCauley, D.W., Docker, M.F., Whyard, S., et al., Lampreys as diverse model organisms in the genomics era, Bioscience, 2015, vol. 65, no. 11, pp. 1046–1056. https://doi.org/10.1093/biosci/biv139

    Article  Google Scholar 

  57. Mehta, T.K., Ravi, V., Yamasaki, S., et al., Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum), Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 40, pp. 16044–16049. https://doi.org/10.1073/pnas.1315760110

    Article  Google Scholar 

  58. Meléndez-Ferro, M., Villar-Cheda, B., Abalo, X.M., et al., Early development of the retina and pineal complex in the Sea lamprey: comparative immunocytochemical study, J. Comp. Neurol., 2002, vol. 442, no. 3, pp. 250–265. https://doi.org/10.1002/cne.10090

    Article  Google Scholar 

  59. Moreau, M. and Leclerc, C., The choice between epidermal and neural fate: a matter of calcium, Int. J. Devel. Biol., 2004, vol. 48, no. 2–3, pp. 75–84. https://doi.org/10.1387/ijdb.15272372

    Article  CAS  Google Scholar 

  60. Murakami, Y., Uchida, K., Rijli, F.M., and Kuratani, S., Evolution of the brain developmental plan: Insights from agnathans, Dev. Biol., 2005, vol. 280, no. 2, p. 249–259. https://doi.org/10.1016/j.ydbio.2005.02.008

    Article  CAS  Google Scholar 

  61. Nakatani, Y., Shingate, P., Ravi, V., et al. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution, Nat. Commun., 2021, vol. 12, no. 1, art. ID 4489. https://doi.org/10.1038/s41467-021-24573-z

    Article  CAS  Google Scholar 

  62. Noro, M., Sugahara, F., and Kuraku, S., Reevaluating Emx gene phylogeny: homopolymeric amino acid tracts as a potential factor obscuring orthology signals in cyclostome genes, BMC Evol. Biol., 2015, vol. 15, no. 1, art. ID 78. https://doi.org/10.1186/s12862-015-0351-z

    Article  CAS  Google Scholar 

  63. Ohno, S., Evolution by Gene Duplication, Heidelberg: Springer Berlin, 1970. https://doi.org/10.1007/978-3-642-86659-3

  64. Oisi, Y., Ota, K.G., and Kuraku, S., Craniofacial development of hagfishes and the evolution of vertebrates, Nature, 2013, vol. 493, no. 7431, pp. 175–180. https://doi.org/10.1038/nature11794

    Article  CAS  Google Scholar 

  65. Onimaru, K. and Kuraku, S., Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications, Brief Funct. Genomics, 2018, vol. 17, no. 5, pp. 352–361. https://doi.org/10.1093/bfgp/ely008

    Article  CAS  Google Scholar 

  66. Osório, J. and Rétaux, S., The lamprey in evolutionary studies, Devel. Genes. Evol., 2008, vol. 218, no. 5, pp. 221–235. https://doi.org/10.1007/s00427-008-0208-1

    Article  Google Scholar 

  67. Osumi, N., Shinohara, H., Numayama-Tsuruta, K., et al., Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator, Stem. Cells, 2008, vol. 26, no. 7, p. 1663–1672. https://doi.org/10.1634/stemcells.2007-0884

    Article  CAS  Google Scholar 

  68. Ota, K.G., Kuraku, S., and Kuratani, S., Hagfish embryology with reference to the evolution of the neural crest, Nature, 2007, vol. 446, no. 7136, pp. 672–675. https://doi.org/10.1038/nature05633

    Article  CAS  Google Scholar 

  69. Parker, H.J., Bronner, M.E., and Krumlauf, R., An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates, Devel. Biol., 2019, vol. 453, no. 1, pp. 19–33. https://doi.org/10.1016/j.ydbio.2019.05.001

    Article  CAS  Google Scholar 

  70. Pasquier, J., Braasch, I., Batzel, P., et al., Evolution of gene expression after whole-genome duplication: new insights from the spotted gar genome, J. Exp. Zool., B, Mol. Devel. Evol., 2017, vol. 328, no. 7, pp. 709–721. https://doi.org/10.1002/jez.b.22770

    Article  CAS  Google Scholar 

  71. Pavlov, D.S., Nazarov, D.Y., Zvezdin, A.O., et al. Downstream migration of early larvae of the European river lamprey Lampetra fluviatilis, Dokl. Biol. Sci., 2014, vol. 459, no. 1, pp. 344–347. https://doi.org/10.1134/S0012496614060039

    Article  CAS  Google Scholar 

  72. Pereira, A., Levy, A., Vukić, J., et al., Putting European lampreys into perspective: A global-scale multilocus phylogeny with a proposal for a generic structure of the Petromyzontidae, J. Zool. Syst. Evol. Res., 2021. vol. 59, no. 8, pp. 1982–1993. https://doi.org/10.1111/jzs.12522

    Article  Google Scholar 

  73. Piavis, G.W., Embryological stages in the sea lamprey and effects of temperature on development, U.S. Fish Wildl. Serv. Biol. Bull., 1961, vol. 61, no. 182, pp. 111–143.

    Google Scholar 

  74. Qiu, H., Hildebrand, F., Kuraku, S., et al., Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case, BMC Genomics, 2011, vol. 12, no. 1, art. ID 325. https://doi.org/10.1186/1471-2164-12-325

    Article  CAS  Google Scholar 

  75. Ravi, V., Bhatia, S., Shingate, P., et al., Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas, Sci. Rep., 2019, vol. 9, no. 1, art. ID 19559. https://doi.org/10.1038/s41598-019-56085-8

    Article  CAS  Google Scholar 

  76. Renaud, C.B., Lampreys of the world. An annotated and illustrated catalogue of lamprey species known to date, FAO Species Cat. Fish. Purp., no. 5. Rome: FAO, 2011.

    Google Scholar 

  77. Reyes, R.C., Embryogenesis and ammocoete morphological development of the Pacific lamprey (Entosphenus tridentatus Gairdner, 1836) from the American River, California, Tracy Tech. Bull., 2008, vol. 3.

    Google Scholar 

  78. Richardson, M.K. and Wright, G.M., Developmental transformations in a normal series of embryos of the sea lamprey Petromyzon marinus (Linnaeus), J. Morph., 2003, vol. 257, no. 3, pp. 348–363. https://doi.org/10.1002/jmor.10119

    Article  Google Scholar 

  79. Richardson, M.K., Admiraal, J., and Wright, G.M., Developmental anatomy of lampreys, Biol. Rev. Camb. Philos. Soc., 2010, vol. 85, no. 1, pp. 1–33. https://doi.org/10.1111/j.1469-185X.2009.00092.x

    Article  Google Scholar 

  80. Sacerdot, C., Louis, A., Bon, C., et al., Chromosome evolution at the origin of the ancestral vertebrate genome, Genome Biol., 2018, vol. 19, no. 1, p. 166. https://doi.org/10.1186/s13059-018-1559-1

    Article  CAS  Google Scholar 

  81. Sharpe, C.R., Fritz, A., De Robertis, E.M., et al., A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction, Cell, 1987, vol. 50, no. 5, pp. 749–758. https://doi.org/10.1016/0092-8674(87)90333-3

    Article  CAS  Google Scholar 

  82. Shimeld, S.M. and Donoghue, P.C.J., Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish), Development, 2012, vol. 139, no. 12, pp. 2091–2099. https://doi.org/10.1242/dev.074716

    Article  CAS  Google Scholar 

  83. Simakov, O., Marlétaz, F., Yue, J.X., et al., Deeply conserved synteny resolves early events in vertebrate evolution, Nat. Ecol. Evol., 2020, vol. 4, no. 6, pp. 820–830. https://doi.org/10.1038/s41559-020-1156-z

    Article  Google Scholar 

  84. Slack, J.M. and Tannahill, D., Noggin the dorsalizer, Nature, 1993, vol. 361, no. 6412, pp. 498–499. https://doi.org/10.1038/361498a0

    Article  CAS  Google Scholar 

  85. Smith, A.J., Howell, J.H., and Piavis, G.W., Comparative embryology of five species of lamprey of the Upper Great Lakes, Copeia, 1968, vol. 1968, no. 3, pp. 461–469. https://doi.org/10.2307/1442013

    Article  Google Scholar 

  86. Smith, J.J., Kuraku, S., Holt, C., et al., Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution, Nat. Genet., 2013, vol. 45, no. 4, pp. 415–421. https://doi.org/10.1038/ng.2568

    Article  CAS  Google Scholar 

  87. Smith, J.J. and Keinath, M.C., The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications, Genome Res., 2015, vol. 25, no. 8, pp. 1081–1090. https://doi.org/10.1101/gr.184135.114

    Article  CAS  Google Scholar 

  88. Smith, J.J., Timoshevskaya, N., Ye, C., et al., The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution, Nat. Genet., 2018, vol. 50, no. 2, pp. 270–277. https://doi.org/10.1038/s41588-017-0036-1

    Article  CAS  Google Scholar 

  89. Smith, W.C. and Harland, R.M., Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos, Cell, 1992, vol. 70, no. 5, pp. 829–840. https://doi.org/10.1016/0092-8674(92)90316-5

    Article  CAS  Google Scholar 

  90. Smith, W.C., Knecht, A.K., Wu, M., et al., Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm, Nature, 1993, vol. 361, no. 6412, pp. 547–549. https://doi.org/10.1038/361547a0

    Article  CAS  Google Scholar 

  91. Square, T., Romášek, M., Jandzik, D., et al., CRISPR/Cas9-mediated mutagenesis in the Sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates, Development, 2015, vol. 142, no. 23, pp. 4180–4187. https://doi.org/10.1242%2Fdev.125609

    CAS  Google Scholar 

  92. Suda, Y., Kurokawa, D., Takeuchi, M., et al., Evolution of Otx paralogue usages in early patterning of the vertebrate head, Devel. Biol., 2009, vol. 325, no. 1, pp. 282–295. https://doi.org/10.1016/j.ydbio.2008.09.018

    Article  CAS  Google Scholar 

  93. Sugahara, F., Murakami, Y., and Kuratani, S., Gene Expression Analysis of Lamprey Embryo, New York: Springer, 2015.

    Book  Google Scholar 

  94. Sugahara, F., Pascual-Anaya, J., Oisi, Y., et al., Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain, Nature, 2016, vol. 531, no. 7592, pp. 97–100. https://doi.org/10.1038/nature16518

    Article  CAS  Google Scholar 

  95. Sugahara, F., Murakami, Y., Pascual-Anaya, J., et al., Reconstructing the ancestral vertebrate brain, Devel. Growth Differ., 2017, vol. 59, no. 4, pp. 163–174. https://doi.org/10.1111/dgd.12347

    Article  Google Scholar 

  96. Suzuki, D.G., Murakami, Y., Escriva, H., et al., A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center, 2015, J. Comp. Neurol., vol. 523, no. 2, pp. 251–261. https://doi.org/10.1002/cne.23679

    Article  Google Scholar 

  97. Tahara, Y., Normal stages of development in the lamprey, Lampetra reissneri (Dybowski), Zool. Sci., 1988, vol. 5, pp. 109–118.

    Google Scholar 

  98. Tank, E.M., Dekker, R.G., Beauchamp, K., et al., Patterns and consequences of vertebrate Emx gene duplications, Evol. Devel., 2009, vol. 11, no. 4, pp. 343–353. https://doi.org/10.1111/j.1525-142X.2009.00341.x

    Article  CAS  Google Scholar 

  99. Tomsa, J.M. and Langeland, J.A., Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw, Devel. Biol., 1999, vol. 207, no. 1, pp. 26–37. https://doi.org/10.1006/dbio.1998.9163

    Article  CAS  Google Scholar 

  100. Toresson, H., Martinez-Barbera, J.P., Bardsley, A., et al., Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon, Devel. Genes Evol., 1998, vol. 208, no. 8, pp. 431–439. https://doi.org/10.1007/s004270050200

    Article  CAS  Google Scholar 

  101. Tsimbalov, I.A., Kucheryuavyi, A.V., and Pavlov, D.S., Results of Hybridization between Anadromous and Resident Forms of European River Lamprey Lampetra fluviatilis, J. Ichthyol., 2018, vol. 58, no. 1, pp. 122–125. https://doi.org/10.1134/S0032945218010137

    Article  Google Scholar 

  102. Van de Peer, Y., Mizrachi, E., and Marchal, K., The evolutionary significance of polyploidy, Nat. Rev. Genet., 2017, vol. 18, no. 7, pp. 411–424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  Google Scholar 

  103. Venkatesh, T.V., Holland, N.D., Holland, L.Z., et al., Sequence and developmental expression of amphioxus AmphiNk2-1: insights into the evolutionary origin of the vertebrate thyroid gland and forebrain, Devel. Genes Evol., 1999, vol. 209, no. 4, pp. 254–259. https://doi.org/10.1007/s004270050250

    Article  CAS  Google Scholar 

  104. Xanthos, J.B., Kofron, M., Tao, Q., et al., The roles of three signaling pathways in the formation and function of the Spemann Organizer, Development, 2002, vol. 129, no. 17, pp. 4027–4043. https://doi.org/10.1242/dev.129.17.4027

    Article  CAS  Google Scholar 

  105. Yang, X.U., Si-Wei, Z.H.U., Qing-Wei, L.I., Lamprey: a model for vertebrate evolutionary research, Dongwuxue Yanjiu, 2016, vol. 37, no. 5, p. 263–269. https://doi.org/10.13918/j.issn.2095-8137.2016.5.263

    Article  CAS  Google Scholar 

  106. York, J.R. and McCauley, D.W., Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates, J. Exp. Biol., 2020, vol. 223. Suppl. 1, art. ID jeb206433. https://doi.org/10.1242/jeb.206433

    Article  Google Scholar 

  107. York, J.R., Lee, E.M.J., and McCauley, D.W. The Lamprey as a Model Vertebrate in Evolutionary Developmental Biology, in Lampreys: Biology, Conservation and Control. Fish and Fisheries Series, Docker, M., Ed., Dordrecht: Springer, 2019, vol. 38, pp. 481–526 https://doi.org/10.1007/978-94-024-1684-8_6

  108. Zaraisky, A.G., Lukyanov, S.A., Vasiliev, O.L., et al., A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo, Devel. Biol., 1992, vol. 152, no. 2, pp. 373–382. https://doi.org/10.1016/0012-1606(92)90144-6

    Article  CAS  Google Scholar 

  109. Zu, Y., Zhang, X., Ren, J., et al., Biallelic editing of a lamprey genome using the CRISPR/Cas9 system, Sci. Rep., 2016, vol. 6, no. 1, Article 23496. https://doi.org/10.1038/srep23496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bayramov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

Statement of the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by O. Zhiryakova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayramov, A.V., Ermakova, G.V., Kucheryavyy, A.V. et al. Lamprey as Laboratory Model for Study of Molecular Bases of Ontogenesis and Evolutionary History of Vertebrata. J. Ichthyol. 62, 1213–1229 (2022). https://doi.org/10.1134/S0032945222060029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222060029

Keywords:

Navigation