Skip to main content
Log in

Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The pycnogonids (or sea spiders) are an enigmatic group of arthropods, classified in recent phylogenies as a sister-group of either euchelicerates (horseshoe crabs and arachnids), or all other extant arthropods. Because of their bizarre morpho-anatomy, homologies with other arthropod taxa have been difficult to assess. We review the main morphology-based hypotheses of correspondence between anterior segments of pycnogonids, arachnids and mandibulates. In an attempt to provide new relevant data to these controversial issues, we performed a PCR survey of Hox genes in two pycnogonid species, Endeis spinosa and Nymphon gracile, from which we could recover nine and six Hox genes, respectively. Phylogenetic analyses allowed to identify their orthology relationships. The Deformed gene from E. spinosa and the abdominal-A gene from N. gracile exhibit unusual sequence divergence in their homeodomains, which, in the latter case, may be correlated with the extreme reduction of the posterior region in pycnogonids. Expression patterns of two Hox genes (labial and Deformed) in the E. spinosa protonymphon larva are discussed. The anterior boundaries of their expression domains favour homology between sea spider chelifores, euchelicerates chelicerae and mandibulate (first) antennae, in contradistinction with previously proposed alternative schemes such as the protocerebral identity of sea spider chelifores or the absence of a deutocerebrum in chelicerates. In addition, while anatomical and embryological evidences suggest the possibility that the ovigers of sea spiders could be a duplicated pair of pedipalps, the Hox data support them as modified anterior walking legs, consistent with the classical views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abzhanov A, Kaufman T (1999) Homeotic genes and the arthropod head: expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. Proc Natl Acad Sci USA 96:10224–10229

    Article  PubMed  CAS  Google Scholar 

  • Abzhanov A, Popadic A, Kaufman TC (1999) Chelicerate Hox genes and the homology of arthropod segments. Evol Dev 1:77–89

    Article  PubMed  CAS  Google Scholar 

  • Arango CP (2003) Molecular approach to the phylogenetics of sea spiders (Arthropoda: Pycnogonida) using partial sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 28:588–600

    Article  PubMed  CAS  Google Scholar 

  • Averof M (1998) Origin of the spider’s head. Nature 395:436–437

    Article  PubMed  CAS  Google Scholar 

  • Babu KS (1965) Anatomy of the central nervous system of arachnids. Zool Jb Anat 82:1–154

    Google Scholar 

  • Bain BA (2003a) Larval types and a summary of postembryonic development within the pycnogonids. Invertebr Reprod Dev 43:193–222

    Google Scholar 

  • Bain BA (2003b) Postembryonic development in the pycnogonid Austropallene cornigera (Family Callipallenidae). Invertebr Reprod Dev 43:181–192

    Google Scholar 

  • Behrens W (1984) Larvenentwicklung und Metamorphose von Pycnogonum litorale (Chelicerata, Pantopoda). Zoomorphology 104:266–279

    Article  Google Scholar 

  • Borradaile LA, Potts FA, Eastham LES, Saunders JT, Kerkut, GA (1961) The invertebrata: a manual for the use of students, 4th edn. Cambridge University Press, London

    Google Scholar 

  • Boyan G, Reichert H, Hirth F (2003) Commissure formation in the embryonic insect brain. Arthropod Struct Dev 32:61–77

    Article  Google Scholar 

  • Brauer A (1894) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions I. Z Wiss Zool 57:402–432

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Budd GE (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275

    Article  PubMed  CAS  Google Scholar 

  • Budd GE, Telford MJ (2005) Along came a sea spider. Nature 437:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol II. Freeman, San Francisco and London

    Google Scholar 

  • Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346

    PubMed  CAS  Google Scholar 

  • Carroll SB (2005) The new science of Evo Devo: endless forms most beautiful. Norton and Co, New York, London

    Google Scholar 

  • Carroll SB, Grenier J, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Blackwell, London

    Google Scholar 

  • Chen J, Waloszek D, Maas A (2004) A new “great-appendage” arthropod from the lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20

    Article  Google Scholar 

  • Colgan DJ, McLauchlan A, Wilson GDF, Livingston S, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA sequences and arthropod molecular evolution. Aust J Zool 46:419–437

    Article  Google Scholar 

  • Coyne JA (2005) Switching on evolution. Nature 435:1029–1030

    Article  CAS  Google Scholar 

  • Damen WGM, Hausdorf M, Seyfarth E-A, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 95:10665–10670

    Article  PubMed  CAS  Google Scholar 

  • Deutsch JS, Mouchel-Vielh E (2003) Hox genes and the crustacean body plan. BioEssays 25:878–887

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duboule D (1994) Guide book to the homeobox genes. Oxford University Press, Oxford

    Google Scholar 

  • Dunlop JA, Arango CP (2004) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21

    Article  Google Scholar 

  • Edgecombe G, Wilson GDF, Colgan DJ, Gray MR, Cassis G (2000) Arthropod cladistics: combined analysis of histone H3 and U2 snRNA sequences and morphology. Cladistics 16:155–203

    Article  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 255:1–23

    Article  PubMed  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2003) Developmental biology, 7th edn. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70

    PubMed  Google Scholar 

  • Guindon S, Gascuel, O (2003) A simple fast and accurate algorithm to estimate large phylogenies by Maximum Likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hassanin A (2006) Phylogeny of arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern rates of substitution. Mol Phylogenet Evol 38:100–116

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Léger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst Biol 54:277–298

    Article  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    Article  PubMed  CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    PubMed  CAS  Google Scholar 

  • Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20:842–854

    Article  PubMed  CAS  Google Scholar 

  • Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel, M (2006) Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 441(7092):506–508

    Article  PubMed  Google Scholar 

  • Jarvis JH, King PE (1978) Reproductive biology of British pycnogonids (oögenesis and the reproductive cycle). Zool J Linn Soc 63:105–131

    Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282

    PubMed  CAS  Google Scholar 

  • Leach WE (1814) The zoological miscellany, vol. 1, pp 33–34, 43–45

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    Article  PubMed  CAS  Google Scholar 

  • Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148

    Article  PubMed  CAS  Google Scholar 

  • Meisenheimer J (1902) Beiträge zur Entwicklungsgeschichte der Pantopoden. I. Die Entwicklung von Ammothea echinata Hodge bis zur Ausbildung der Larvenform. Z wiss Zool 72:191–248

    Google Scholar 

  • Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

    PubMed  Google Scholar 

  • Montagu G (1808) Description of several marine animals found on the South Coast of Devonshire. Trans Linn Soc London 9:81–113

    Google Scholar 

  • Mouchel-Vielh E, Rigolot C, Gibert JM, Deutsch JS (1998) Molecules and the body plan: the Hox genes of cirripedes (Crustacea). Mol Phylogenet Evol 9:382–389

    Article  PubMed  CAS  Google Scholar 

  • Mouchel-Vielh E, Blin M, Rigolot C, Deutsch JS (2002) Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evol Dev 4:76–85

    Article  PubMed  CAS  Google Scholar 

  • Murtha M, Leckman JF, Ruddle FH (1991) Detection of homeobox genes in development and evolution. Proc Natl Acad Sci USA 88:10711–10715

    Article  PubMed  CAS  Google Scholar 

  • Page DT (2004) A mode of arthropod brain evolution suggested by Drosophila commissure development. Evol Dev 6:25–31

    Article  PubMed  Google Scholar 

  • Pavlopoulos A, Averof M (2002) Developmental evolution: Hox proteins ring the changes. Curr Biol 12:R291–R293

    Article  PubMed  CAS  Google Scholar 

  • Pearse V, Pearse J, Buchsbaum M, Buchsbaum R (1987) Living invertebrates. Blackwell/Boxwood, Pacific Grove, California

    Google Scholar 

  • Popadic A, Panganiban G, Rusch D, Shear WA, Kaufman TC (1998) Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev Genes Evol 208:142–150

    Article  PubMed  CAS  Google Scholar 

  • Quéinnec E (2001) Insights into arthropod head evolution. Two heads in one: the end of the “endless dispute”? Ann Soc Entomol Fr 37:51–69

    Google Scholar 

  • Regier JC, Shultz J (2001) Elongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20:136–148

    Article  PubMed  CAS  Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Article  PubMed  Google Scholar 

  • Sanchez S (1959) Le développement des pycnogonides et leurs affinités avec les arachnides. Thèses CNRS, Paris

    Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman R (1993) Brain evolution in decapod crustacea. J Exp Zool 295:112–133

    Article  Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. Crustac Issues 16:139–165

    Google Scholar 

  • Shultz JW, Regier JC (2000) Phylogenetic analysis of two nuclear protein-encoding genes in arthropods supports a crustacean-hexapod clade. Proc R Soc Lond B 267:1011–1019

    Article  CAS  Google Scholar 

  • Simonnet F, Deutsch J, Quéinnec E (2004) hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 95:10671–10675

    Article  PubMed  CAS  Google Scholar 

  • Vilpoux K, Waloszek D (2003) Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda. Arthropod Struct Dev 32:349–383

    Article  Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘orsten’ of Sweden and the phylogenetic position of pycnogonids. Palaeontology 45:421–446

    Article  Google Scholar 

  • Waloszek D, Chen J, Maas A, Wang X (2005) Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev 34:189–205

    Article  Google Scholar 

  • Weygoldt P (1985) Ontogeny of the arachnid central nervous system. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 20–37

    Google Scholar 

  • Winter G (1980) Beiträge zur Morphologie und Embryologie des vorderen Körperabschnitts (Cephalosoma) der Pantopoda Gerstaecker, 1863. Z Zoolog Syst Evol Forsch 18:27–61

    Google Scholar 

  • Zrzavy J, Hypsa V, Vlaskova M (1998) Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 97–107

    Google Scholar 

Download references

Acknowledgements

We thank the Station Biologique de Roscoff for providing lab facilities for specimen collection and preparation. We are grateful to Jean Deutsch, Eric Quéinnec and Nicolas Rabet for advice and discussion, to Pierrette Lamarre for technical help, and to Thierry Jafredo for lab facilities. This work was founded by CNRS and the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Manuel.

Additional information

Guest editors Jean Deutsch and Gerhard Scholtz

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Colossendeis bicincta, picture showing the proximal part of the proboscis and the anterior region of the cephalosoma, with the insertion of pedipalps (pd) and ovigers (ov) on a common basis (JPEG 183 kb)

Fig. S2

The position of Endeis and Nymphon in the pycnogonid tree derived from the combined analysis of 18S and 28S rDNA and morphological data (Arango 2003). The two species investigated in the present study, Endeis spinosa (male individual) and Nymphon gracile, are illustrated on the right side of the tree. cho chelifore, ov oviger, pd pedipalp (JPEG 284 kb)

Fig S3

Amino-acid sequence alignment of pycnogonid Hox genes with representative genes from several panarthropods and other bilaterians, classified by groups of orthology. The alignment comprises, from left to right, eight positions of the hexapeptide region, six positions in the N-terminal region flanking the homeodomain, the 60 aa of the homeodomain, and ten positions in the C-terminal region flanking the homeodomain. Dashes indicate gaps inserted to align the sequences; blanks correspond to missing data. Black shading indicates amino-acid identity; grey shading indicate amino-acid similarity (for both, the threshold for shading was 40% of the sequences). In the homeodomain, helix 1 spans from position 10 to position 22, helix 2 from 28 to 37 and helix 3 from 42 to 58. Abbreviations of taxon names as in Fig. 3 (DOC 84 kb)

Fig. S4

Maximum Likelihood analysis of the 60-aa (homeodomain) Hox gene dataset. Genes from Endeis spinosa are labelled in red; genes from Nymphon gracile are labelled in blue. ML bootstraps (300 replicates) are indicated above the branches. The scale bar indicates the number of nucleotide substitutions per position in the sequences. LogL=−2262.20753, gamma shape=0.457, proportion of invariant sites=0.041 (JPEG 464 kb)

Table S1

Supplement table (DOC 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manuel, M., Jager, M., Murienne, J. et al. Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216, 481–491 (2006). https://doi.org/10.1007/s00427-006-0095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-006-0095-2

Keywords

Navigation