Skip to main content
Log in

Nervous and muscle system development in Phascolion strombus (Sipuncula)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abouheif E, Akam M, Dickinson WJ, Holland PWJ, Meyer A, Patel NH, Raff RA, Roth VL, Wray G (1997) Homology and developmental genes. Trends Genet 13:432–433

    Article  PubMed  CAS  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Åkesson B (1958) A study of the nervous system of the Sipunculoideae with some remarks on the development of the two species Phascolion strombi Montagu and Golfingia minuta Keferstein. Undersökningar över Öresund 38:1–249

    Google Scholar 

  • Balavoine G, Adoutte A (2003) The segmented Urbilateria: a testable scenario. Integr Comp Biol 43:137–147

    Article  Google Scholar 

  • Bleidorn C, Vogt L, Bartolomaeus T (2003a) A contribution to sedentary polychaete phylogeny using 18S rRNA sequence data. J Zoolog Syst Evol Res 41:186–195

    Article  Google Scholar 

  • Bleidorn C, Vogt L, Bartolomaeus T (2003b) New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogenet Evol 29:279–288

    Article  PubMed  CAS  Google Scholar 

  • Boore JL (2004) Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura. BMC Genomics 5:67

    Article  PubMed  CAS  Google Scholar 

  • Boore JL, Staton JL (2002) The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol Biol Evol 19:127–137

    PubMed  CAS  Google Scholar 

  • Davis GK, Patel NH (1999) The origin and evolution of segmentation. Trends Cell Biol 9:M68–M72

    Article  PubMed  CAS  Google Scholar 

  • Dickinson AJG, Nason J, Croll RP (1999) Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119:49–62

    Article  Google Scholar 

  • Eeckhaut I, Fievez L, Müller MCM (2003) Larval development of Myzostoma cirriferum. J Morphol 258:269–283

    Article  PubMed  Google Scholar 

  • Eernisse DJ, Albert JS, Anderson FE (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41:305–330

    Article  Google Scholar 

  • Friedrich S, Wanninger A, Brückner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117

    Article  PubMed  Google Scholar 

  • Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Platyhelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Biol 49:539–562

    Article  PubMed  CAS  Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    Article  PubMed  CAS  Google Scholar 

  • Hall JR, Scheltema RS (1975) Comparative morphology of open-ocean pelagosphera. In: Rice ME, Todorovic M (eds) Proceedings of the international symposium on the biology of the Sipuncula and Echiura, vol 1. Naucno Delo, Belgrade, pp 183–197

    Google Scholar 

  • Haszprunar G, Schaefer K (1997) Anatomy and phylogenetic significance of Micropilina arntzi (Mollusca, Monoplacophora, Micropilinidae fam. nov.). Acta Zool 77:315–334

    Article  Google Scholar 

  • Haszprunar G, Wanninger A (2000) Molluscan muscle systems in development and evolution. J Zoolog Syst Evol Res 38:157–163

    Article  Google Scholar 

  • Hay-Schmidt A (1990) Catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes of the nervous system of the pilidium larva (Nemertini). Zoomorphology 109:231–244

    Article  Google Scholar 

  • Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Proc R Soc Lond B 267:1071–1079

    Article  CAS  Google Scholar 

  • Hessling R (2002) Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 121:221–234

    Article  Google Scholar 

  • Hessling R (2003) Novel aspects of the nervous system of Bonellia viridis (Echiura) revealed by the combination of immunohistochemistry, confocal laser-scanning microscopy and three-dimensional reconstruction. Hydrobiologia 496:225–239

    Article  Google Scholar 

  • Hessling R, Westheide W (2002) Are Echiura derived from a segmented ancestor?—immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 252:100–113

    Article  PubMed  Google Scholar 

  • Hill SD, Boyer BC (2001) Phalloidin labeling of developing muscle in embryos of the polychaete Capitella sp. I. Biol Bull 201:257–258

    Article  PubMed  CAS  Google Scholar 

  • Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4:617–627

    Article  PubMed  CAS  Google Scholar 

  • Ierusalimsky VN, Zakharov IS, Balaban PM (1997) Comparison of serotonin and dopamine neural systems in adult and juvenile terrestrial snails Helix and Eobania. Zh Vyssh Nerv Deiat Im I P Pavlova 47:563–576

    PubMed  Google Scholar 

  • Jaeckle WB, Rice ME (2002) Phylum Sipuncula. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic, London, pp 375–396

    Google Scholar 

  • Jenner RA (2001) Bilaterian phylogeny and uncritical recycling of morphological data sets. Syst Biol 50:730–742

    Article  PubMed  CAS  Google Scholar 

  • Jenner RA (2003) Unleashing the force of cladistics? Metazoan phylogenetics and hypothesis testing. Integr Comp Biol 43:207–218

    Article  Google Scholar 

  • Jennings RM, Halanych KM (2005) Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): evidence for conserved gene order in Annelida. Mol Biol Evol 22:210–222

    Article  PubMed  Google Scholar 

  • Jördens J, Struck T, Purschke G (2004) Phylogenetic inference regarding Parergodrilidae and Hrabeiella periglandulata (“Polychaeta”, Annelida) based on 18S rDNA, 28S rDNA and COI sequences. J Zoolog Syst Evol Res 42:270–280

    Article  Google Scholar 

  • Lacalli TC, West JE (1985) The nervous system of a pilidium larva: evidence from electron-microscope reconstructions. Can J Zool 63:1909–1916

    Article  Google Scholar 

  • Ladurner P, Rieger R (2000) Embryonic muscle development of Convolutra pulchra (Turbellaria–Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375

    Article  PubMed  CAS  Google Scholar 

  • Maslakova SA, Martindale MQ, Norenburg JL (2004) Vestigial prototroch in a basal nemertean Carinoma tremaphorus (Nemertea, Palaeonemertea). Evol Dev 6:219–226

    Article  PubMed  CAS  Google Scholar 

  • McHugh D (1997) Molecular evidence that echiurans and pogonophorans are derived annelids. Proc Natl Acad Sci U S A 94:8006–8009

    Article  PubMed  CAS  Google Scholar 

  • McHugh D (2000) Molecular phylogeny of the Annelida. Can J Zool 78:1873–1884

    Article  CAS  Google Scholar 

  • Müller MCM, Westheide W (1997) Das Nervensystem parapodienloser Polychaeten: orthogonale Strukturen des Nervensystems juveniler Stadien und progenetischer Arten. Verh Dtsch Zool Ges 90:209

    Google Scholar 

  • Müller MCM, Westheide W (2000) Structure of the nervous system of Myzostoma cirriferum (Annelida) as revealed by immunohistochemistry and cLSM analyses. J Morphol 245:87–98

    Article  PubMed  Google Scholar 

  • Müller MCM, Westheide W (2002) Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zool 83:33–48

    Article  Google Scholar 

  • Nielsen C (2004) Trochophora larvae: cell lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zoolog Mol Dev Evol 302B:35–68

    Article  Google Scholar 

  • Payton B (1981) Structure of the leech nervous system. In: Muller KJ, Nicholls JG, Stent GS (eds) Neurobiology of the leech. Cold Spring Harbor Laboratory, New York, pp 35–50

    Google Scholar 

  • Prud'homme B, de Rosa R, Arendt D, Julien J-F, Pajaziti R, Dorresteijn AWC, Adoutte A, Wittbrodt J, Balavoine G (2003) Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 13:1876–1881

    Article  PubMed  CAS  Google Scholar 

  • Rice ME (1973) Morphology, behaviour and histogenesis of the pelagosphera larva of Phascolosoma agassizii (Sipuncula). Smithson Contrib Zool 132:1–51

    Google Scholar 

  • Rice ME (1985) Sipuncula: developmental evidence for phylogenetic inference. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon, Oxford, pp 274–296

    Google Scholar 

  • Scheltema AH (1993) Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biol Bull 184:57–78

    Article  Google Scholar 

  • Schulze A, Rice ME (2003) Muscle development in larvae and juveniles of four sipunculan species. Integr Comp Biol 43:936

    Google Scholar 

  • Seaver EC (2003) Segmentation: mono- or polyphyletic? Int J Dev Biol 47:538–595

    Google Scholar 

  • Siddall ME, Fitzhugh K, Coates KA (1998) Problems determining the phylogenetic position of echiurans and pogonophorans with limited data. Cladistics 14:401–410

    Article  Google Scholar 

  • Staton JL (2003) Phylogenetic analysis of the mitochondrial cytochrome c oxidase subunit 1 gene from 13 sipunculan genera: intra- and interphylum relationships. Invertebr Biol 122:252–264

    Article  Google Scholar 

  • Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38

    Article  PubMed  Google Scholar 

  • Voronezhskaya EE, Tsitrin EB, Nezlin LP (2003) Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455:299–309

    Article  PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2002a) Chiton myogenesis: perspectives for the development and evolution of larval and adult muscle systems in molluscs. J Morphol 251:103–113

    Article  PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2002b) Muscle development in Antalis entalis (Mollusca, Scaphopoda) and its significance for scaphopod relationships. J Morphol 254:53–64

    Article  PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85

    Google Scholar 

  • Wanninger A, Ruthensteiner B, Lobenwein S, Salvenmoser W, Dictus WJAG, Haszprunar G (1999) Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda). Dev Genes Evol 209:226–238

    Article  PubMed  CAS  Google Scholar 

  • Witten JL, Truman JW (1996) Developmental plasticity of neuropeptide expression in motoneurons of the moth, Manduca sexta: steroid hormone regulation. J Neurobiol 29:99–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Michael Thorndyke and the staff of the Kristineberg Marine Research Station (Sweden) and the Heron Island Research Station (Australia) for their hospitality and support throughout the years. We thank Olga Alexandrova and Charles N. David (Munich) for making confocal microscopy available. We are particularly grateful to Mark Q. Martindale (Hawaii) and three anonymous reviewers whose detailed criticisms greatly improved the manuscript. The financial support of the German Science Foundation (DFG) (grant WA 1580/1–2 to AW), the European Commission (ARI-programme, 5th framework, to AW), and the Australian Research Council (to BD) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wanninger.

Additional information

Communicated by M.Q. Martindale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanninger, A., Koop, D., Bromham, L. et al. Nervous and muscle system development in Phascolion strombus (Sipuncula). Dev Genes Evol 215, 509–518 (2005). https://doi.org/10.1007/s00427-005-0012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0012-0

Keywords

Navigation