Skip to main content
Log in

Effects of Cogmed working memory training on cognitive performance

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Research on the cognitive benefits of working memory training programs has produced inconsistent results. Such research has frequently used laboratory-specific training tasks, or dual-task n-back training. The current study used the commercial Cogmed Working Memory (WM) Training program, involving several different training tasks involving visual and auditory input. Healthy college undergraduates were assigned to either the full Cogmed training program of 25, 40-min training sessions; an abbreviated Cogmed program of 25, 20-min training sessions; or a no-contact control group. Pretest and posttest measures included multiple measures of attention, working memory, fluid intelligence, and executive functions. Although improvement was observed for the full training group for a digit span task, no training-related improvement was observed for any of the other measures. Results of the study suggest that WM training does not improve performance on unrelated tasks or enhance other cognitive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Cogmed and Cogmed working memory training are trademarks, in the U.S. and/or other countries, of Pearson Education, Inc. or its affiliate(s).

References

  • Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: A meta-analysis. Psychonomic Bulletin & Review, 22, 366–377.

    Article  Google Scholar 

  • Beck, S. J., Hanson, C. A., Puffenberger, S. S., Benninger, K. L., & Benninger, W. B. (2010). A controlled trial of working memory training for children and adolescents with ADHD. Journal of Clinical Child & Adolescent Psychology, 39, 825–836.

    Article  Google Scholar 

  • Benton, A. L., de Hamsher, K. S., & Sivan, A. B. (1993). Multilingual aphasia examination (2nd edn.). Iowa City: AJA Associates.

    Google Scholar 

  • Bilker, W. B., Hansen, J. A., Brensinger, C. M., Richard, J., Gur, R. E., & Gur, R. C. (2012). Development of abbreviated nine-item forms of the Raven’s standard progressive matrices test. Assessment, 19, 354–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehmer, Y., Westerberg, H., & Backman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 1110–1120.

    Article  Google Scholar 

  • Cantarella, A., Borella, E., Carretti, B., Kliegel, M., & de Beni, R. (2017). Benefits in tasks related to everyday life competences after a working memory training in older adults. International Journal of Geriatric Psychiatry, 32, 86–93.

    Article  PubMed  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.

    Book  Google Scholar 

  • Caruso, D. R., Taylor, J. J., & Detterman, D. K. (1982). Intelligence research and intelligent policy. In D. K. Detterman & R. J. Sternberg (Eds.), How and how much can intelligence be increased (pp. 45–65). Norwood: Ablex.

    Google Scholar 

  • Chacko, A., Bedard, A. C., Marks, D. J., Feirsen, N., Uderman, J. Z., Chimiklis, A., Ramon, M. (2014). A randomized clinical trial of Cogmed working memory training in school-age children with ADHD: A replication in a diverse sample using a control condition. Journal of Child Psychology & Psychiatry, 55, 247–255.

    Article  Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193–199.

    Article  Google Scholar 

  • Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542.

    Article  Google Scholar 

  • Colom, R., Abad, F. J., Quiroga, M. A., Shih, P. C., & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584–606.

    Article  Google Scholar 

  • Colom, R., Rebollo, I., Abad, F. J., & Shih, P. C. (2006). Complex span tasks, simple span tasks, and cognitive abilities: A reanalysis of key studies. Memory & Cognition, 34, 158–171.

    Article  Google Scholar 

  • Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277–296.

    Article  Google Scholar 

  • Colom, R., Román, F. J., Abad, F. J., Shih, P. C., Privado, J., … Jaeggi, S. M. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41, 712–727.

    Article  Google Scholar 

  • Curtis, K. L., Greve, K. W., Bianchini, K. J., & Breenan, A. (2006). California verbal learning test indicators of malingered neurocognitive dysfunction: Sensitivity and specificity in traumatic brain injury. Assessment, 13, 46–61.

    Article  PubMed  Google Scholar 

  • Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology & Aging, 23, 720–730.

    Article  Google Scholar 

  • Dahlin, K. I. E. (2011). Effects of working memory training on reading in children with special needs. Reading & Writing, 24, 479–491.

    Article  Google Scholar 

  • Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test-II manual. San Antonio: Psychological Corporation.

    Google Scholar 

  • Detterman, D. K. (1993). The case for the prosecution: Transfer as an epiphenomenon. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 1–24). Westport: Ablex.

    Google Scholar 

  • Dumontheil, I., & Klingberg, T. (2012). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cerebral Cortex, 22, 1078–1085.

    Article  PubMed  Google Scholar 

  • Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.

    Google Scholar 

  • Estrada, E., Ferrer, E., Abad, F. J., Roman, F. J., & Colom, R. (2015). A general factor of intelligence fails to account for changes in tests’ scores after cognitive practice: A longitudinal multi-group latent-variable study. Intelligence, 50, 93–99.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–179.

    Article  Google Scholar 

  • Gathercole, S. E., Pickering, S. J., Knight, C., & Stegmann, Z. (2004). Working memory skills and educational attainment: Evidence from national curriculum assessments at 7 and 14 years of age. Applied Cognitive Psychology, 18, 1–16.

    Article  Google Scholar 

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121–151.

    Article  PubMed  Google Scholar 

  • Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5, 471–482.

    Article  PubMed  Google Scholar 

  • Green, C. T., Long, D. L., Green, D., Iosif, A. M., Dixon, J. F., Miller, M. R., … Schweitzer, J. V. (2012). Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics, 9, 639–648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greiffenstein, M. F., Baker, W. J., & Gola, T. (1994). Validation of malingered amnesia measures with a large clinical sample. Psychological Assessment, 6, 218–224.

    Article  Google Scholar 

  • Greve, K. W., Bianchini, K. J., Etherton, J. L., Meyers, J. E., Curtis, K. L., & Ord, J. S. (2009). The reliable digit span test in chronic pain: Classification accuracy in detecting malingered pain-related disability. The Clinical Neuropsychologist, 24, 137–152.

    Article  PubMed  Google Scholar 

  • Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24, 2409–2419.

    Article  PubMed  Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12, F9-F15.

    Article  Google Scholar 

  • Holmes, J., Gathercole, S. E., Place, M., Dunning, D. L., Hilton, K. A., & Elliott, J. G. (2010). Working memory deficits can be overcome: Impacts of training and medication on working memory in children with ADHD. Applied Cognitive Psychology, 24, 827–836.

    Article  Google Scholar 

  • Hossiep, R., Turck, D., &. Hasella, M. (1999). Bochumer Matrizen test: BOMAT-advanced-short version. Gottingen: Hogrefe.

    Google Scholar 

  • Houben, K., Wiers, R. W., & Jansen, A. (2011). Getting a grip on drinking behavior: Training working memory to reduce alcohol abuse. Psychological Science, 22, 968–975.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 6829–6833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2012). Cogmed and working memory training—current challenges and the search for underlying mechanisms. Journal of Applied Research in Memory & Cognition, 1, 211–213.

    Article  Google Scholar 

  • Jausovec, N., & Jausovec, K. (2012). Working memory training: Improving intelligence–changing brain activity. Brain & Cognition, 79, 96–106.

    Article  Google Scholar 

  • Jensen, A. R. (1969). How much can we boost iq and scholastic achievement? Harvard Educational Review, 39, 1–123.

    Article  Google Scholar 

  • Jensen, A. R. (1981). Raising the IQ: the Ramey and Haskins study. Intelligence, 5, 29–40.

    Article  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 66–71.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217.

    Article  Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P., Johnson, M., Gustafsson, P., Dahlström, K., Westerberg, H. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 177–186.

    Article  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical & Experimental Neuropsychology, 24, 781–791.

    Article  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14, 389–433.

    Article  Google Scholar 

  • Li, S.-C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23, 731–742.

    Article  PubMed  Google Scholar 

  • Lindelov, J. K., Dall, J. O., Kristensen, C. D., Aagesen, M. H., Olsen, S. A., Snuggerud, T. R., & Sikorska, A. (2016). Training and transfer effects of n-back training for brain-injured and healthy subjects. Neuropsychological Rehabilitation, 26, 895–909.

    Article  PubMed  Google Scholar 

  • Logan, G. D. (1998). What is learned during automatization? II. Obligatory encoding of spatial location. Journal of Experimental Psychology: Human Perception and Performance, 24, 1720–1736.

    PubMed  Google Scholar 

  • McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323, 800–802.

    Article  PubMed  Google Scholar 

  • Mehta, M. A., Goodyear, I. M., & Sahakian, B. J. (2004). Methylphenidate improves working memory function and set-shifting AD/HD: Relationships to baseline memory capacity. Journal of Child Psychology & Psychiatry, 45, 293–305.

    Article  Google Scholar 

  • Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270–291.

    Article  PubMed  Google Scholar 

  • Melby-Lervag, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11, 512–534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moody, D. E. (2009). Can intelligence be increased by training on a task of working memory? Intelligence, 37, 327–328.

    Article  Google Scholar 

  • Noack, H., Lovden, M., Schmiedek F., & Lindenberger, U. (2009). Cognitive plasticity in adulthood and old age: Gauging the generality of cognitive intervention effects. Restorative Neurology and Neuroscience, 27, 435–453.

    PubMed  Google Scholar 

  • Noack, H., Lovden, M., & Schmiedek, F. (2014). On the validity and generality of transfer effects in cognitive training research. Psychological Research Psychologische Forschung, 78, 773–789.

    Article  PubMed  Google Scholar 

  • Oberauer, K., Schulze, R., Wilhelm, O., & Suss, H.-M. (2005). Working memory and intelligence—their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 61–65.

    Article  PubMed  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.

    Article  PubMed  Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., Ballard, C. G. (2010). Putting brain training to the test. Nature, 465, 775–778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainer, G., & Miller, E. K. (2000). Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron, 27, 179–189.

  • Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time. Cognitive Psychology, 41, 1–48.

    Article  PubMed  Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142, 359–379.

    Article  Google Scholar 

  • Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.

    Article  Google Scholar 

  • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374.

    Article  Google Scholar 

  • Rouder, J. N., Speckman, P. L., Sun, D., & Morey, R. D. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237.

    Article  Google Scholar 

  • Salomon, G., & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanism of a neglected phenomenon. Educational Psychologist, 24, 113–142.

    Article  Google Scholar 

  • Seidler, R. D., Bernard, J. A., Buschkuehl, M., Jaeggi, S., Jonides, J., & Humfleet, J. (2010). Cognitive training as an intervention to improve driving ability in the older adult (Tech. Rep. No. M-CASTL 2010-01). Ann Arbor: University of Michigan.

    Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing. II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.

    Article  Google Scholar 

  • Shinaver, III C. S., Entwistle, P. C., & Soderqvist, S. (2014). Cogmed WM training: Reviewing the reviews. Applied Neuropsychology: Child, 3, 163–172.

    Article  Google Scholar 

  • Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory & Cognition, 1, 185–193.

    Article  Google Scholar 

  • Solanto, M. V. (1998). Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behavioral Brain Research, 94, 127–152.

    Article  Google Scholar 

  • Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41, 341–357.

    Article  Google Scholar 

  • Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proceedings of the National Academy of Sciences of the United States of America, 105, 6791–6792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugarman, M. A., & Axelrod, B. (2014). Embedded measures of performance validity using verbal fluency tests in a clinical sample. Applied Neuropsychology: Adult, 22, 141–146.

    Article  Google Scholar 

  • Swanson, H. L., Saez, L., & Gerber, M. (2006). Do phonological and executive processes in English learners at risk for reading disabilities in Grade 1 predict performance in Grade 2? Learning Disabilities Research & Practice, 19, 225–238.

    Article  Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory & Language, 69, 36–58.

    Article  Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: A review. Psychological Research Psychologische Forschung, 78, 803–820.

    Article  Google Scholar 

  • Wechsler, D. A. (2008). Wechsler Adult Intelligence Scale (4th edn.). San Antonio: Psychological Corporation.

    Google Scholar 

  • Wechsler, D. A. (2009). Wechsler Memory Scale (4th edn.). San Antonio: Psychological Corporation.

    Google Scholar 

  • Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory—a single-subject analysis. Physiology & Behavior, 92, 186–192.

    Article  Google Scholar 

  • Wiley, J., Jarosz, A. F., Cushen, P. J., & Colflesh, G. J. H. (2011). New rule use drives the relation between working memory capacity and Raven’s advanced progressive matrices. Journal of Experiment Psychology: Learning, Memory, & Cognition, 37, 256–263.

    Google Scholar 

  • Xin, Z., Lai, Z.-R., Li, F., & Maes, J. H. R. (2014). Near- and far-transfer effects of working memory updating training in elderly adults. Applied Cognitive Psychology, 28, 403–408.

    Article  Google Scholar 

Download references

Funding

Free use of Cogmed Working Memory Training software was provided to the authors by the software publisher for all participants in the current study. No additional funding has been provided from this or any other funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Etherton.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of Texas State University. All procedures involved in this study has been performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etherton, J.L., Oberle, C.D., Rhoton, J. et al. Effects of Cogmed working memory training on cognitive performance. Psychological Research 83, 1506–1518 (2019). https://doi.org/10.1007/s00426-018-1012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1012-9

Navigation