Skip to main content

Advertisement

Log in

Tactile motion lacks momentum

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The displacement of the final position of a moving object in the direction of the observed motion path, i.e. an overestimation, is known as representational momentum. It has been described both in the visual and the auditory domain, and is suggested to be modality-independent. Here, we tested whether a representational momentum can also be demonstrated in the somatosensory domain. While the cognitive literature on representational momentum suggests that it can, previous work on the psychophysics of tactile motion perception would rather predict an underestimation of the perceived endpoint of a tactile stimulus. Tactile motion stimuli were applied on the left and the right dorsal forearms of 32 healthy participants, who were asked to indicate the subjectively perceived endpoint of the stimulation. Velocity, length and direction of the trajectory were varied. Contrary to the prediction based on the representational momentum literature, participants in our experiment significantly displaced the endpoint against the direction of movement (underestimation). The results are thus compatible with previous psychophysical findings on the perception of tactile motion. Further studies combining paradigms from classical psychophysics and cognitive psychology will be needed to resolve the apparently paradoxical predictions by the two literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Actis-Grosso, R., & Stucchi, N. (2003). Shifting the start: Backward mislocation of the initial position of a motion. Journal of Experimental Psychology Human Perception and Performance, 29(3), 675–691.

    Article  PubMed  Google Scholar 

  • Bolognini, N., Casanova, D., Maravita, A., & Vallar, G. (2012). Bisecting real and fake body parts: Effects of prism adaptation after right brain damage. Frontiers in Human Neuroscience, 6, 154. doi:10.3389/fnhum.2012.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. Journal of Experimental Psychology Human Perception and Performance, 22(2), 480–501.

    Article  PubMed  Google Scholar 

  • Brouwer, A.-M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: Translating versus transforming objects. Journal of Vision, 4(7), 575–584. doi:10.1167/4.7.5.

    Article  PubMed  Google Scholar 

  • Brugger, P., & Meier, R. (2015). A new illusion at your elbow. Perception, 44(2), 219–221. doi:10.1068/p7910.

    Article  PubMed  Google Scholar 

  • Cai, R. H., Jacobson, K., Baloh, R., Schlag-Rey, M., & Schlag, J. (2000). Vestibular signals can distort the perceived spatial relationship of retinal stimuli. Experimental Brain Research, 135(2), 275–278. doi:10.1007/s002210000549.

    Article  PubMed  Google Scholar 

  • Cavanagh, P., & Anstis, S. (2013). The flash grab effect. Vision Research, 91, 8–20. doi:10.1016/j.visres.2013.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cellini, C., Scocchia, L., & Drewing, K. (2016). The buzz-lag effect. Experimental Brain Research, 234(10), 2849–2857. doi:10.1007/s00221-016-4687-4.

    Article  PubMed  Google Scholar 

  • Chapman, L. J., & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition, 6(2), 175–183.

    Article  PubMed  Google Scholar 

  • Christopher Bill, J., & Teft, L. W. (1972). Space–time relations: The effects of variations in stimulus and interstimulus interval duration on perceived visual extent. Acta Psychologica, 36(5), 358–369. doi:10.1016/0001-6918(72)90032-7.

    Article  Google Scholar 

  • Cody, F. W. J., Garside, R. A. D., Lloyd, D., & Poliakoff, E. (2008). Tactile spatial acuity varies with site and axis in the human upper limb. Neuroscience Letters, 433(2), 103–108. doi:10.1016/j.neulet.2007.12.054.

    Article  PubMed  Google Scholar 

  • Essick, G. K. (1998). Factors affecting direction discrimination of moving tactile stimuli. ADVANCES IN PSYCHOLOGY-AMSTERDAM-, 127, 1–54.

    Article  Google Scholar 

  • Essick, G. K., Bredehoeft, K. R., McLaughlin, D. F., & Szaniszlo, J. A. (1991). Directional sensitivity along the upper limb in humans. Somatosensory and Motor Research, 8(1), 13–22.

    Article  PubMed  Google Scholar 

  • Essick, G. K., McGlone, F., Dancer, C., Fabricant, D., Ragin, Y., Phillips, N., & Guest, S. (2010). Quantitative assessment of pleasant touch. Neuroscience and Biobehavioral Reviews, 34(2), 192–203. doi:10.1016/j.neubiorev.2009.02.003.

    Article  PubMed  Google Scholar 

  • Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. Time, action and cognition (pp. 309–323). Berlin: Springer.

    Chapter  Google Scholar 

  • Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. The American Journal of Psychology, 97(3), 323–341.

    Article  PubMed  Google Scholar 

  • Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology Learning Memory and Cognition, 13(2), 259–268. doi:10.1037/0278-7393.13.2.259.

    Article  Google Scholar 

  • Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. Journal of Experimental Psychology Learning Memory and Cognition, 16(6), 1107–1117. doi:10.1037/0278-7393.16.6.1107.

    Article  Google Scholar 

  • Gallace, A., & Spence, C. (2010). The science of interpersonal touch: An overview. Neuroscience and Biobehavioral Reviews, 34(2), 246–259. doi:10.1016/j.neubiorev.2008.10.004.

    Article  PubMed  Google Scholar 

  • Getzmann, S., & Lewald, J. (2009). Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 193(3), 437–443. doi:10.1007/s00221-008-1641-0.

    Article  PubMed  Google Scholar 

  • Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception, 33(5), 591–599.

    Article  PubMed  Google Scholar 

  • Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS One, 2(3), e333. doi:10.1371/journal.pone.0000333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldreich, D., & Tong, J. (2013). Prediction, postdiction, and perceptual length contraction: A Bayesian low-speed prior captures the cutaneous rabbit and related illusions. Consciousness Research, 4, 221. doi:10.3389/fpsyg.2013.00221.

    Google Scholar 

  • Hall, G. S., & Donaldson, H. H. (1885). Motor Sensations on the Skin. Mind, 10(40), 557–572.

    Article  Google Scholar 

  • Helson, H. (1930). The Tau effect—an example of psychological relativity. Science, 71(1847), 536–537. doi:10.1126/science.71.1847.536.

    Article  PubMed  Google Scholar 

  • Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory and Cognition, 18(3), 299–309.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, direction, and velocity effects. The American Journal of Psychology, 108(2), 255–274. doi:10.2307/1423131.

    Article  Google Scholar 

  • Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology Learning Memory and Cognition, 21(1), 241.

    Article  Google Scholar 

  • Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin and Review, 2(3), 322–338.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin and Review, 12(5), 822–851. doi:10.3758/BF03196775.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin and Review, 21(6), 1371–1403. doi:10.3758/s13423-014-0624-3.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception and Psychophysics, 44(3), 211–221.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition, 82(3), 89–99.

    Article  Google Scholar 

  • Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. The Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 58(6), 961–979. doi:10.1080/02724980443000368.

    Article  PubMed  Google Scholar 

  • Intraub, H. (2004). Anticipatory spatial representation of 3D regions explored by sighted observers and a deaf-and-blind-observer. Cognition, 94(1), 19–37.

    Article  PubMed  Google Scholar 

  • Intraub, H., Morelli, F., & Gagnier, K. M. (2015). Visual, haptic and bimodal scene perception: Evidence for a unitary representation. Cognition, 138, 132–147. doi:10.1016/j.cognition.2015.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston, H. M., & Jones, M. R. (2006). Higher order pattern structure influences auditory representational momentum. Journal of Experimental Psychology Human Perception and Performance, 32(1), 2–17. doi:10.1037/0096-1523.32.1.2.

    Article  PubMed  Google Scholar 

  • Kennett, S., Taylor-Clarke, M., & Haggard, P. (2001). Noninformative vision improves the spatial resolution of touch in humans. Current Biology, 11(15), 1188–1191.

    Article  PubMed  Google Scholar 

  • Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715. doi:10.1016/S0042-6989(00)00226-1.

    Article  PubMed  Google Scholar 

  • Kerzel, D. (2002). A matter of design: No representational momentum without predictability. Visual Cognition, 9(1–2), 66–80.

    Article  Google Scholar 

  • Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43(25), 2623–2635.

    Article  PubMed  Google Scholar 

  • Kerzel, D., Jordan, S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology Human Perception and Performance, 27(4), 829–840. doi:10.1037/0096-1523.27.4.829.

    Article  PubMed  Google Scholar 

  • Langford, N., Hall, R. J., & Monty, R. A. (1973). Cutaneous perception of a track produced by a moving point across the skin. Journal of Experimental Psychology, 97(1), 59. doi:10.1037/h0033767.

    Article  PubMed  Google Scholar 

  • Lawrence, M. A. (2016). ez: Easy analysis and visualization of factorial experiments (Version 4.4-0). https://cran.r-project.org/web/packages/ez/index.html. Accessed 31 Jan 2017.

  • Lenggenhager, B., Loetscher, T., Kavan, N., Pallich, G., Brodtmann, A., Nicholls, M. E. R., & Brugger, P. (2012). Paradoxical extension into the contralesional hemispace in spatial neglect. Cortex A Journal Devoted to the Study of the Nervous System and Behavior, 48(10), 1320–1328. doi:10.1016/j.cortex.2011.10.003.

    Article  PubMed  Google Scholar 

  • Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6(9), 387.

    Article  PubMed  Google Scholar 

  • Nijhawan, R., & Kirschfeld, K. (2003). Analogous mechanisms compensate for neural delays in the sensory and the motor pathways. Current Biology, 13(9), 749–753. doi:10.1016/S0960-9822(03)00248-3.

    Article  PubMed  Google Scholar 

  • Pack, C. C., & Bensmaia, S. J. (2015). Seeing and feeling motion: Canonical computations in vision and touch. PLoS Biology, 13(9), e1002271. doi:10.1371/journal.pbio.1002271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, N. (2016). yarrr: A companion to the e-book YaRrr!: The Pirate’s Guide to R. https://cran.r-project.org/web/packages/yarrr/index.html. Accessed 2 May 2016.

  • R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria. http://www.r-project.org/. Accessed 4 Nov 2015.

  • Sarrazin, J.-C., Giraudo, M.-D., & Pittenger, J. B. (2005). Tau and Kappa effects in physical space: The case of audition. Psychological Research, 71(2), 201–218. doi:10.1007/s00426-005-0019-1.

    Article  PubMed  Google Scholar 

  • Schlag, J., Cai, R. H., Dorfman, A., Mohempour, A., & Schlag-Rey, M. (2000). Extrapolating movement without retinal motion. Nature, 403(6765), 38–39. doi:10.1038/47402.

    Article  PubMed  Google Scholar 

  • Seizova-Cajic, T., & Taylor, J. L. (2014). Somatosensory space abridged: Rapid change in tactile localization using a motion stimulus. PLoS One, 9(3), e90892. doi:10.1371/journal.pone.0090892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Senna, I., Parise, C. V., & Ernst, M. O. (2015). Hearing in slow-motion: Humans underestimate the speed of moving sounds. Scientific Reports, 5, 14054. doi:10.1038/srep14054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapley, S. M., & Bryden, M. P. (1985). A group test for the assessment of performance between the hands. Neuropsychologia, 23(2), 215–221.

    Article  PubMed  Google Scholar 

  • Thornton, I. M. (2014). Representational momentum and the human face: An empirical note. WICT, 2014, 101.

    Google Scholar 

  • Tong, J., Ngo, V., & Goldreich, D. (2016). Tactile length contraction as Bayesian inference. Journal of Neurophysiology. doi:10.1152/jn.00029.2016.

    PubMed  PubMed Central  Google Scholar 

  • Trojan, J., Kleinböhl, D., Stolle, A. M., Andersen, O. K., Hölzl, R., & Arendt-Nielsen, L. (2006). Psychophysical “perceptual maps” of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Research, 1120(1), 106–113. doi:10.1016/j.brainres.2006.08.065.

    Article  PubMed  Google Scholar 

  • Whitsel, B. L., Favorov, O. V., Kelly, D. G., & Tommerdahl, M. (1991). Mechanisms of dynamic peri- and intra-columnar interactions in somatosensory cortex: Stimulus-specific contrast enhancement by NMDA receptor activation. In O. Frazen & J. Westman (Eds.), Information processing in the somatosensory system (pp. 353–369). London: Macmillan Press.

    Chapter  Google Scholar 

  • Whitsel, B. L., Franzen, O., Dreyer, D. A., Hollins, M., Young, M., Essick, G. K., & Wong, C. (1986). Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosensory Research, 3(3), 185–196.

    Article  PubMed  Google Scholar 

  • Wickham, H. (2016). tidyverse: Easily install and load “Tidyverse” packages (Version 1.1.1). https://cran.r-project.org/web/packages/tidyverse/index.html. Accessed 31 Jan 2017.

  • Yoshikawa, S., & Sato, W. (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive Affective and Behavioral Neuroscience, 8(1), 25–31.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Stefan Engelter, senior neurologist at University Hospital Basel, for encouraging us to publish this experiment. We thank Peter Rohner for the illustration of the experimental setup and Daniel Goldreich for his comments on a previous version of the manuscript. Finally, the very constructive critique of three expert reviewers is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Macauda.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local Ethics Committee of the University of Basel. All participants gave written informed consent before the experiment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macauda, G., Lenggenhager, B., Meier, R. et al. Tactile motion lacks momentum. Psychological Research 82, 889–895 (2018). https://doi.org/10.1007/s00426-017-0879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-017-0879-1

Navigation