Skip to main content
Log in

An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We provide behavioral evidence that the human motor system is involved in the perceptual decision processes of skilled performers, directly linking prediction accuracy to the (in)ability of the motor system to activate in a response-specific way. Experienced and non-experienced dart players were asked to predict, from temporally occluded video sequences, the landing position of a dart thrown previously by themselves (self) or another (other). This prediction task was performed while additionally performing (a) an action-incongruent secondary motor task (right arm force production), (b) a congruent secondary motor task (mimicking) or (c) an attention-matched task (tone-monitoring). Non-experienced dart players were not affected by any of the secondary task manipulations, relative to control conditions, yet prediction accuracy decreased for the experienced players when additionally performing the force-production, motor task. This interference effect was present for ‘self’ as well as ‘other’ decisions, reducing the accuracy of experienced participants to a novice level. The mimicking (congruent) secondary task condition did not interfere with (or facilitate) prediction accuracy for either group. We conclude that visual–motor experience moderates the process of decision making, such that a seemingly visual–cognitive prediction task relies on activation of the motor system for experienced performers. This fits with a motor simulation account of action prediction in sports and other tasks, and alerts to the specificity of these simulative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abernethy, B., Farrow, D., Gorman, A. D., & Mann, D. (2012). Anticipatory behaviour and expert performance. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice (pp. 288–305). London: Routledge.

    Google Scholar 

  • Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.

    Article  PubMed  Google Scholar 

  • Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.

    Article  Google Scholar 

  • Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., Zentgraf, K., et al. (2014). Prediction of human actions: expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 35, 4016–4034.

    Article  PubMed  Google Scholar 

  • Bischoff, M., Zentgraf, K., Lorey, B., Pilgramm, S., Balser, N., Baumgartner, E., et al. (2012). Motor familiarity: brain activation when watching kinematic displays of one’s own movements. Neuropsychologia, 50, 2085–2092.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267.

    Article  PubMed  Google Scholar 

  • Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or nonbiological motion on movement execution. Journal of Sports Sciences, 25, 519–530.

    Article  PubMed  Google Scholar 

  • Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 3–22.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.

    Article  PubMed  Google Scholar 

  • Cañal-Bruland, R., van Ginneken, W. F., van der Meer, B. R., & Williams, A. M. (2011). The effect of local kinematic changes on anticipation judgments. Human Movement Science, 30, 495–503.

    Article  PubMed  Google Scholar 

  • Capa, R. L., Marshall, P. J., Shipley, T. F., Salesse, R. N., & Bouquet, C. A. (2011). Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation. Psychological Research, 75, 152–157.

    Article  PubMed  Google Scholar 

  • Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 69–74.

    Article  PubMed  Google Scholar 

  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 1148–1167.

    Article  PubMed  Google Scholar 

  • Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31, 3493–3499.

    Article  PubMed  Google Scholar 

  • Cooper, L., & Podgorny, P. (1976). Mental transformations and visual comparison processes: effects of complexity and similarity. Journal of Experimental Psychology: Human Perception and Performance, 2, 503–514.

    PubMed  Google Scholar 

  • Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492–502.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31, 1257–1267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., et al. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.

    Article  PubMed  Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.

    Article  PubMed  Google Scholar 

  • Flach, R., Knoblich, G., & Prinz, W. (2004). Recognizing one’s own clapping: the role of temporal cues. Psychological Research, 69, 147–156.

    Article  PubMed  Google Scholar 

  • Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–667.

    Article  PubMed  Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Science, 2, 493–501.

    Article  Google Scholar 

  • Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19, 1239–1255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobet, F. (1998). Expert memory: a comparison of four theories. Cognition, 66, 115–152.

    Article  PubMed  Google Scholar 

  • Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3, 35–44.

    Article  Google Scholar 

  • Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.

    Article  PubMed  Google Scholar 

  • Grosjean, M., Zwickel, J., & Prinz, W. (2009). Acting while perceiving: assimilation precedes contrast. Psychological Research, 73, 3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman, E. D., & Blake, R. (2001). Brain activity invoked by inverted and imagined biological motion. Vision Research, 41, 1475–1482.

    Article  PubMed  Google Scholar 

  • Hamilton, A., Wolpert, D. M., & Frith, U. (2004). Your own action influences how you perceive another person’s action. Current Biology, 14, 493–498.

    Article  PubMed  Google Scholar 

  • Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65, 3–14.

    Article  PubMed  Google Scholar 

  • Hohmann, T., Troje, N. F., Olmos, A., & Munzert, J. (2011). The influence of motor expertise and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23, 403–415.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action. Behavioral and Brain Sciences, 24, 849–937.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the Findings. Psychonomic Bulletin and Review, 12, 822–851.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., Moinar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.

    Article  PubMed  Google Scholar 

  • Ikegami, T., & Ganesh, G. (2014). Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans. Scientific Reports, 4, A6989.

    Article  Google Scholar 

  • Jackson, R. C., Abernethy, B., & Wernhart, S. (2009). Sensitivity to fine-grained and coarse visual information: the effect of blurring on anticipation skill. International Journal of Sport Psychology, 40, 461–475.

    Google Scholar 

  • Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355–371.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, 103–109.

    Article  Google Scholar 

  • Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.

    Article  PubMed  Google Scholar 

  • Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12, 467–472.

    Article  PubMed  Google Scholar 

  • Knoblich, G., & Prinz, W. (2001). Recognition of self-generated actions from kinematic displays of drawing. Journal of Experimental Psychology: Human Perception and Performance, 27, 456–465.

    PubMed  Google Scholar 

  • Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: the influence of posture and perspective. Experimental Brain Research, 194, 233–243.

    Article  PubMed  Google Scholar 

  • Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210–220.

    PubMed  Google Scholar 

  • Makris, S., & Urgesi, C. (2014). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive and Affective Neuroscience, 10, 342–351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann, D., Dicks, M., Cañal-Bruland, R., & van der Kamp, J. (2013). Neurophysiological studies may provide a misleading picture of how perceptual–motor interactions are coordinated. i-Perception, 4, 78–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport and Exercise Psychology, 29, 457–478.

    PubMed  Google Scholar 

  • Miall, R. C., Stanley, J., Todhunter, S., Levick, C., Lindo, S., & Miall, J. D. (2006). Performing hand actions assists the visual discrimination of similar hand postures. Neuropsychologia, 44, 966–976.

    Article  PubMed  Google Scholar 

  • Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology, Learning, Memory, and Cognition, 34, 1076–1083.

    Article  PubMed  Google Scholar 

  • Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulligan, D., & Hodges, N. J. (2014). Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychological Research, 78, 692–704.

    Article  PubMed  Google Scholar 

  • Paulus, M., Lindemann, O., & Bekkering, H. (2009). Motor simulation in verbal knowledge acquisition. The Quarterly Journal of Experimental Psychology, 62, 2298–2305.

    Article  PubMed  Google Scholar 

  • Pilgramm, S., Lorey, B., Stark, R., Munzert, J., & Zentgraf, K. (2009). The role of own-body representations in action observation: a functional MRI study. NeuroReport, 20, 997–1001.

    Article  PubMed  Google Scholar 

  • Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524–529.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.

    Article  Google Scholar 

  • Prinz, W., & Hommel, B. (2002). Common mechanisms in perception and action: Attention and performance XIX. New York: Oxford University Press.

    Google Scholar 

  • Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.

    Article  PubMed  Google Scholar 

  • Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17, 1201–1207.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Knoblich, G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychological Science, 15, 604–609.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.

    Article  PubMed  Google Scholar 

  • Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 11, 2475–2480.

    Article  Google Scholar 

  • Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 2452–2461.

    Article  PubMed  Google Scholar 

  • Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11, 211–218.

    Article  PubMed  Google Scholar 

  • Schubotz, R., & von Cramon, D. Y. (2003). Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage, 20, S120–S131.

    Article  PubMed  Google Scholar 

  • Schubotz, R. I., & von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24, 5467–5474.

    Article  PubMed  Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.

    Article  PubMed  Google Scholar 

  • Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.

    Google Scholar 

  • Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., & Prinz, W. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.

    Article  PubMed  Google Scholar 

  • Springer, A., Brandstädter, S., & Prinz, W. (2013a). Dynamic simulation and static matching for action prediction: evidence from body part priming. Cognitive Science, 37, 936–952.

    Article  PubMed  Google Scholar 

  • Springer, A., Parkinson, J., & Prinz, W. (2013b). Action simulation: time course and representational mechanisms. Frontiers in Cognition, 4, 1–20.

    Google Scholar 

  • Starkes, J. L. (1987). Skill in field hockey: the nature of the cognitive advantage. International Journal of Sport Psychology, 2, 146–160.

    Google Scholar 

  • Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2012). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.

    Article  PubMed  Google Scholar 

  • Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, M. (2012). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.

    Article  PubMed  Google Scholar 

  • Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise and Sport, 73, 107–112.

    Article  PubMed  Google Scholar 

  • Williams, A. M., & Davids, K. (1995). Declarative knowledge in sport: a by-product of experience or a characteristic of expertise? Journal of Sport and Exercise Psychology, 17, 259–275.

    Google Scholar 

  • Williams, A. M., & Davids, K. (1998). Perceptual expertise in sport: Research, theory and practice. In H. Steinberg, I. Cockerill, & A. Dewey (Eds.), What sport psychologists do (pp. 48–57). Leicester: British Psychological Society.

    Google Scholar 

  • Williams, A. M., & Ward, P. (2003). Developing perceptual expertise in sport. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sports: Advances in research on sport expertise (pp. 220–249). Champaign, Illinois: Human Kinetics.

    Google Scholar 

  • Williams, A. M., & Ward, P. (2007). Perceptual-cognitive expertise in sport: Exploring new horizons. In G. Tenenabum & R. Eklund (Eds.), Handbook of sport psychology (3rd ed., pp. 203–223). New York: Wiley.

    Google Scholar 

  • Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.

    Article  PubMed  Google Scholar 

  • Witt, J. K., Kemmerer, D., Linkenauger, S. A., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21, 1215–1219.

    Article  PubMed  Google Scholar 

  • Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: a role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34, 1479–1492.

    PubMed  PubMed Central  Google Scholar 

  • Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925–930.

    Article  PubMed  Google Scholar 

  • Wolfensteller, U., Schubotz, R., & von Cramon, D. Y. (2007). Understanding nonbiological dynamics with your own premotor system. Neuroimage, 36, T33–T43.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358, 593–602.

    Article  Google Scholar 

  • Wuhr, P., & Müsseler, J. (2001). Time course of the blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 27, 1260–1270.

    PubMed  Google Scholar 

  • Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10, 585–596.

    Article  PubMed  Google Scholar 

  • Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.

    Article  PubMed  Google Scholar 

  • Zentgraf, K., Munzert, J., Bischoff, M., & Newman-Norlund, R. D. (2011). Simulation during observation of human actions—theories, empirical studies, applications. Vision Research, 51, 827–835.

    Article  PubMed  Google Scholar 

  • Zwickel, J., & Prinz, W. (2012). Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research, 76, 171–182.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funds awarded to the corresponding authors (Hodges) from an NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery grant and from a New Investigator salary award from CIHR (the Canadian Institute for Health Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola J. Hodges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulligan, D., Lohse, K.R. & Hodges, N.J. An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation. Psychological Research 80, 496–509 (2016). https://doi.org/10.1007/s00426-015-0672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0672-y

Keywords

Navigation