Skip to main content
Log in

Assimilation and contrast: the two sides of specific interference between action and perception

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Perception and action have long been treated as relatively independent and serial processes. More recent views, however, consider perception and action as relying on a common set of processes and/or representations. The present paper will focus on a variety of specific (content-based) perception–action interactions that have been taken as support for such views. In particular, the following aspects will be considered: direction of influence (perception on action vs. action on perception), temporal type (concurrent vs. non-concurrent), functional relation (related/unrelated), and type of movements (biological vs. non-biological). Different extant models of the perception-action interface are discussed and a classification schema proposed that tries to explain when contrast and when assimilation effects will arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Attraction was found to far away distractors. This pattern was explained within a competitive model and is consistent with the current account, assuming that distance controls amount of overlap (see Zwickel et al. 2010a).

  2. We thank an anonymous reviewer for raising this point.

References

  • Beets, I. A. M., Rösler, F., & Fiehler, K. (2010). Nonvisual motor learning improves visual motion perception: Evidence from violating the two-thirds power law. Journal of Neurophysiology, 104(3), 1612–1624.

    Article  PubMed  Google Scholar 

  • Beets, I. A. M., ’t Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to-perception transfer: Only percept-dependent action affects perception. Vision Research, 50(24), 2633–2641.

    Article  PubMed  Google Scholar 

  • Bekkering, H., & Neggers, S. F. W. (2002). Visual search is modulated by action intentions. Psychological Science, 13(4), 370–374.

    Article  PubMed  Google Scholar 

  • Blaesi, S., & Wilson, M. (2010). The mirror reflects both ways: Action influences perception of others. Brain and Cognition, 72(2), 306–309.

    Article  PubMed  Google Scholar 

  • Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(1–2), 3–22.

    Article  PubMed  Google Scholar 

  • Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An FMRI study. European Journal of Neuroscience, 13(2), 400–404.

    PubMed  Google Scholar 

  • Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.

    Article  PubMed  Google Scholar 

  • Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893–910.

    Article  PubMed  Google Scholar 

  • Chua, R., & Weeks, D. J. (1997). Dynamical explorations of compatibility in perception-action coupling. In B. Hommel & W. Prinz (Eds.), Theoretical issues in stimulus-response compatibility, (pp. 373–398). Amsterdam: North-Holland.

  • Craighero, L., Bello, A., Fadiga, L., & Rizzolatti G. (2002) Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40(5), 492–502.

    Article  PubMed  Google Scholar 

  • Craighero, L., Fadiga, L., Rizzolatti, G., & Umiltà, C. (1998). Visuomotor priming. Visual Cognition, 5, 109–125.

    Article  Google Scholar 

  • Craighero, L., Fadiga, L., Rizzolatti, G., & Umiltà, C. (1999). Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1673–1692.

    Article  PubMed  Google Scholar 

  • Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition, 11(1), 87–97.

    Article  PubMed  Google Scholar 

  • Edwards, M. G., Humphreys, G. W., & Castiello, U. (2003). Motor facilitation following action observation: A behavioural study in prehensile action. Brain and Cognition, 53(3), 495–502.

    Article  PubMed  Google Scholar 

  • Ellis, R., & Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91, 451–471.

    Article  PubMed  Google Scholar 

  • Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action-related stimulus dimensions. Psychological Research/Psychologische Forschung, 71(1), 22–29.

    Article  Google Scholar 

  • Fowler, C. A., Galantucci, B., & Saltzman, E. (2003). Motor theories of perception. In M. A. Arbib (Ed.), The handbook of brain theory & neural networks. New York: MIT.

  • Franz, V. H., Gegenfurtner, K. R., Bülthoff, H. H., & Fahle, M. (2000). Grasping visual illusions: No evidence for a dissociation between perception and action. Psychological Science, 11(1), 20–25.

    Article  PubMed  Google Scholar 

  • Freeman, J. E., & Ellis, J. A. (2003). The representation of delayed intentions: A prospective subject-performed task?. Journal of Experimental Psychology: Learning, Memory and Cognition, 29(5), 976–992.

    Article  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.

    Article  PubMed  Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.

    Article  PubMed  Google Scholar 

  • Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage, 35(4), 1674–1684.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (Ed.) (1979). The ecological approach to visual perception. New York: Houghton Mifflin.

  • Glover, S. (2002). Visual illusions affect planning but not control. Trends in Cognitive Sciences, 6(7), 288–292.

    Article  PubMed  Google Scholar 

  • Gomi, H., Abekawa, N., & Nishida, S. (2006). Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. Journal of Neuroscience, 26(20), 5301–5308.

    Article  PubMed  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  PubMed  Google Scholar 

  • Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Suppl 2), T22–T32.

    Article  PubMed  Google Scholar 

  • Greenwald, A. G. (1972). On doing two things at once: Time sharing as a function of ideomotor compatibility. Journal of Experimental Psychology, 94(1), 52–57.

    Article  PubMed  Google Scholar 

  • Grosjean, M., Shiffrar, M., & Knoblich, G. (2007). Fitts’s law holds for action perception. Psychological Science, 18(2), 95–99.

    Article  PubMed  Google Scholar 

  • Grosjean, M., Zwickel, J., & Prinz, W. (2009). Acting while perceiving: Assimilation precedes contrast. Psychological Research, 73(1), 3–13.

    Article  PubMed  Google Scholar 

  • Hamilton, A., Wolpert, D., & Frith, U. (2004). Your own action influences how you perceive another person’s action. Current Biology, 14(6), 493–498.

    Article  PubMed  Google Scholar 

  • Hannus, A., Cornelissen, F. W., Lindemann, O., & Bekkering, H. (2005). Selection-for-action in visual search. Acta Psychologica (Amst), 118(1–2), 171–191.

    Article  Google Scholar 

  • Helbig, H. B., Steinwender, J., Graf, M., & Kiefer, M. (2010). Action observation can prime visual object recognition. Experimental Brain Research, 200(3–4), 251–258.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral & Brain Sciences, 24(5), 849–937.

    Article  Google Scholar 

  • Hommel, B., & Prinz, W. (1997). Theoretical issues in stimulus-response compatibility: An editor’s introduction. In B. Hommel & W. Prinz (Eds.), Theoretical issues in stimulus-response compatibility (pp. 3–8). Amsterdam: North-Holland.

  • Jacobs, A., & Shiffrar, M. (2005). Walking perception by walking observers. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 157–169.

    Article  PubMed  Google Scholar 

  • Kahneman, D., Beatty, J., & Pollack, I. (1967). Perceptual deficit during a mental task. Science, 157(3785), 218–219.

    Article  PubMed  Google Scholar 

  • Keller, P. E., Knoblich, G., & Repp, B. H. (2007). Pianists duet better when they play with themselves: On the possible role of action simulation in synchronization. Consciousness and Cognition, 16(1), 102–111.

    Article  PubMed  Google Scholar 

  • Kerzel, D. (2001). Visual short-term memory is influenced by haptic perception. Journal of Experimental Psychology: Learning Memory and Cognition, 27(4), 1101–1109.

    Article  Google Scholar 

  • Kilner, J. M., de C. Hamilton, A. F., & Blakemore, S.-J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2(3–4), 158–166.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.

    Article  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility. A model and taxonomy. Psychological Review, 97(2), 253–270.

    Article  PubMed  Google Scholar 

  • Liepelt, R., Prinz, W., & Brass, M. (2010). When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115(3), 426–434.

    Google Scholar 

  • Lindemann, O., & Bekkering, H. (2009). Object manipulation and motion perception: Evidence of an influence of action planning on visual processing. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1062–1071.

    Article  PubMed  Google Scholar 

  • Mahon, B. Z., Milleville, S. C., Negri, G. A. L., Rumiati, R. I., Caramazza, A., & Martin, A. (2007). Action-related properties shape object representations in the ventral stream. Neuron, 55(3), 507–520.

    Google Scholar 

  • Mantas, A., Evdokimidis, I., & Smyrnis, N. (2008). Perception action interaction: The oblique effect in the evolving trajectory of arm pointing movements. Experimental Brain Research, 184(4), 605–616.

    Article  Google Scholar 

  • Miall, R. C., Stanley, J., Todhunter, S., Levick, C., Lindo, S., & Miall, J. D. (2006). Performing hand actions assists the visual discrimination of similar hand postures. Neuropsychologia, 44(6), 966–976.

    Article  PubMed  Google Scholar 

  • Müsseler, J. (1999). How independent from action control is perception? An event-coding account for more equally-ranked crosstalks. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events. Advances in psychology (Vol. 129, Chap. 6, pp. 121–147). Amsterdam: Elsevier.

  • Müsseler, J., & Hommel, B. (1997). Blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 861–872.

    Article  PubMed  Google Scholar 

  • Parsons, L. M. (1987). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19(2), 178–241.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.

    Article  Google Scholar 

  • Proctor, R. W., & Reeve, T. G. (Eds.) (1990). Stimulus-response compatibility: An integrated perspective. Amsterdam: North-Holland.

  • Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioural and Brain Science, 22(3), 341–365; discussion 366–423.

    Google Scholar 

  • Repp, B. H. (2006). Does an auditory distractor sequence affect self-paced tapping? Acta Psychologica, 121(1), 81–107.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18(1), 6–7.

    Article  PubMed  Google Scholar 

  • Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R. L., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human Movement Science, 26(6), 867–891.

    Article  PubMed  Google Scholar 

  • Riddoch, M. J., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsychological evidence for action-based effects on object selection. Nature Neuroscience, 6(1), 82–89.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (1998). Spatial attention: Mechanisms and theories. In M. Sabourin, F. Craik, & M. Robert (Eds.), Advances in psychological science 2: Biological and cognitive aspects (pp. 171–198). Hove: Psychology.

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661–670.

    Article  PubMed  Google Scholar 

  • Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: The smarc effect. Cognition, 99(2), 113–129.

    Article  PubMed  Google Scholar 

  • Sanders, A. F. (1983). Towards a model of stress and human performance. Acta Psychologica, 53(1), 61–97.

    Article  PubMed  Google Scholar 

  • Schneider, W., & Deubel, H. (2002). Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: A review of recent findings and new evidence from stimulus-driven saccade control. In W. Prinz & B. Hommel (Eds.), Attention and performance XIX: Common mechanisms in perception and action, number 19 in Attention and performance (pp. 609–627). Oxford: Oxford University Press.

  • Schubö, A., Aschersleben, G., & Prinz, W. (2001). Interactions between perception and action in a reaction task with overlapping S-R assignments. Psychological Research/Psychologische Forschung, 65(3), 145–157.

    Article  Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349–355.

    Article  PubMed  Google Scholar 

  • Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science, 1(4), 257–264.

    Article  Google Scholar 

  • Simon, J. R. (1968). Effect of ear stimulated on reaction time and movement time. Journal of Experimental Psychology, 78(2), 344–346.

    Article  PubMed  Google Scholar 

  • Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 915–926.

    Article  PubMed  Google Scholar 

  • Stevanovski, B., Oriet, C., & Jolicoeur, P. (2002). Blinded by headlights. Canadian Journal of Experimental Psychology, 56(2), 65–74.

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Howard, L. A., & Jackson, S. R. (1997). Selective reaching to grasp: Evidence for distractor interference effects. Visual Cognition, 4(1), 1–38.

    Article  Google Scholar 

  • Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846.

    Article  PubMed  Google Scholar 

  • Viviani, P. (2002). Motor competence in the perception of dynamic events: A tutorial. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action: Attention and performance XIX (Chap. 21, pp. 406–442). New York: Oxford University Press.

  • Wallace, R. J. (1971). S-R compatibility and the idea of a response code. Journal of Experimental Psychology, 88(3), 354–360.

    Article  PubMed  Google Scholar 

  • Ward, R. (2002). Independence and integration of perception and action: An introduction. Visual Cognition, 9, 385–391.

    Article  Google Scholar 

  • Whitney, D., Westwood, D., & Goodale, M. (2003). The influence of visual motion on fast reaching movements to a stationary object. Nature, 423, 869–873.

    Article  PubMed  Google Scholar 

  • Wickens, C. D. (1980). The structure of attentional resources. In Attention and performance VIII. Lawrence Erlbaum Associates: Hillsdale, N.J.

  • Wickens, C. D. (1984). Processing resources in attention. In R. Parasuraman & D. Davies (Eds.), Varieties of attention (pp. 63–102). Orlando: Academic Press.

  • Wilson, M., & Fox, G. (2007). Working memory for language is not special. Psychonomic Bulletin & Review, 14(3), 470–473.

    Article  Google Scholar 

  • Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.

    Article  PubMed  Google Scholar 

  • Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1479–1492.

    Article  PubMed  Google Scholar 

  • Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40(8), 925–930.

    Article  PubMed  Google Scholar 

  • Wohlschläger, A., & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 397–412.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431), 593–602.

    Article  PubMed  Google Scholar 

  • Wood, J. N. (2007). Visual working memory for observed actions. Journal of Experimental Psychology: General, 136(4), 639–652.

    Article  Google Scholar 

  • Zwickel, J., Grosjean, M., & Prinz, W. (2007). Seeing while moving: Measuring the online influence of action on perception. Quarterly Journal of Experimental Psychology, 60(8), 1063–1071.

    Article  Google Scholar 

  • Zwickel, J., Grosjean, M., & Prinz, W. (2008). A contrast effect between the concurrent production and perception of movement directions. Visual Cognition, 26, 953–978.

    Article  Google Scholar 

  • Zwickel, J., Grosjean, M., & Prinz, W. (2010a). On interference effects in concurrent perception and action. Psychological Research/Psychologische Forschung, 74, 152–171.

    Article  Google Scholar 

  • Zwickel, J., Grosjean, M., & Prinz, W. (2010b). What part of an action interferes with ongoing perception? Acta Psychologica, 134(3), 403–409.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work has been published as the dissertation of the first author. We are very grateful to Marc Grosjean for invaluable discussions and to Rosie Wallis for help with the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Zwickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwickel, J., Prinz, W. Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research 76, 171–182 (2012). https://doi.org/10.1007/s00426-011-0338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-011-0338-3

Keywords

Navigation