Skip to main content
Log in

Emotional attention modulates microsaccadic rate and direction

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Involuntary microsaccades and voluntary saccades reflect human brain activities during attention and cognitive tasks. Our eye movements can also betray our emotional state. However, the effects of attention to emotion on microsaccadic activity remain unknown. The present study was conducted in healthy volunteers to investigate the effects of devoting attention to exogenous emotional stimuli on microsaccadic response, with change in pupil size as an index of sympathetic nervous system activity. Event-related responses to unpleasant images significantly inhibited the rate of microsaccade appearance and altered pupil size (Experiment 1). Additionally, microsaccadic responses to covert orienting of attention to emotional stimuli appeared significantly in the anti-direction to a target, with a fast reaction time (Experiment 2). Therefore, we concluded that attentional shifts induced by exogenous emotional stimuli can modulate microsaccadic activities. Future studies of the interaction between miniature eye movements and emotion may be beneficial in the assessment of pathophysiological responses in mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amrhein, C., Muhlberger, A., Pauli, P., & Wiedemann, G. (2004). Modulation of event-related brain potentials during affective picture processing: A complement to startle reflex and skin conductance response? International Journal of Psychophysiology, 54(3), 231–240.

    Article  PubMed  Google Scholar 

  • Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.

    Article  PubMed  Google Scholar 

  • Bannerman, R. L., Milders, M., & Sahraie, A. (2009). Processing emotional stimuli: Comparison of saccadic and manual choice-reaction times. Cognition and Emotion, 23(5), 930–954.

    Article  Google Scholar 

  • Bernat, E., Patrick, C. J., Benning, S. D., & Tellegen, A. (2006). Effects of picture content and intensity on affective physiological response. Psychophysiology, 43(1), 93–103.

    Article  PubMed Central  PubMed  Google Scholar 

  • Betta, E., Galfano, G., & Turatto, M. (2007). Microsaccadic response during inhibition of return in a target–target paradigm. Vision Research, 47(3), 428–436.

    Article  PubMed  Google Scholar 

  • Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. NeuroReport, 17(10), 1001–1004.

    Article  PubMed  Google Scholar 

  • Blair, K. S., Smith, B. W., Mitchell, D. G., Morton, J., Vythilingam, M., Pessoa, L., et al. (2007). Modulation of emotion by cognition and cognition by emotion. Neuroimage, 35(1), 430–440.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradley, M. M., Moulder, B., & Lang, P. J. (2005). When good things go bad: the reflex physiology of defense. Psychological Science, 16(6), 468–473.

    PubMed  Google Scholar 

  • Brosch, T., Sander, D., Pourtois, G., & Scherer, K. R. (2008). Beyond fear: Rapid spatial orienting toward positive emotional stimuli. Psychological Science, 19(4), 362–370.

    Article  PubMed  Google Scholar 

  • Calvo, M. G., & Lang, P. J. (2005). Parafoveal semantic processing of emotional visual scenes. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 502–519.

    PubMed  Google Scholar 

  • Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of visuospatial attention. The Journal of Neuroscience, 13(3), 1202–1226.

    PubMed  Google Scholar 

  • Coull, J. T., Frith, C. D., Büchel, C., & Nobre, A. C. (2000). Orienting attention in time: Behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38, 808–819.

    Article  PubMed  Google Scholar 

  • Cui, J., Wilke, M., Logothetis, N. K., Leopold, D. A., & Liang, H. (2009). Visibility states modulate microsaccade rate and direction. Vision Research, 49(2), 228–236.

    Article  PubMed Central  PubMed  Google Scholar 

  • Engbert, R. (2006). Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research, 154, 177–192.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43(9), 1035–1045.

    Article  PubMed  Google Scholar 

  • Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology: General, 130(4), 681–700.

    Article  Google Scholar 

  • Galfano, G., Betta, E., & Turatto, M. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159(3), 400–404.

    Article  PubMed  Google Scholar 

  • Gaymard, B., Ploner, C. J., Rivaud, S., Vermersch, A. I., & Pierrot-Deseilligny, C. (1998). Cortical control of saccades. Experimental Brain Research, 123(1–2), 159–163.

    Article  PubMed  Google Scholar 

  • Goldberg, M. C., Lasker, A. G., Zee, D. S., Garth, E., Tien, A., & Landa, R. J. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia, 40(12), 2039–2049.

    Article  PubMed  Google Scholar 

  • Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research, 58(3), 455–472.

    Article  PubMed  Google Scholar 

  • Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42, 2533–2545.

    Article  PubMed  Google Scholar 

  • Hafed, Z. M., Goffart, L., & Krauzlis, R. J. (2009). A neural mechanism for microsaccade generation in the primate superior colliculus. Science, 323(5916), 940–943.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hafed, Z. M., & Krauzlis, R. J. (2010). Microsaccadic suppression of visual bursts in the primate superior colliculus. The Journal of Neuroscience, 30(28), 9542–9547.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartikainen, K. M., Ogawa, K. H., & Knight, R. T. (2000). Transient interference of right hemispheric function due to automatic emotional processing. Neuropsychologia, 38(12), 1576–1580.

    Article  PubMed  Google Scholar 

  • Jonides, J., & Irwin, D. E. (1981). Capturing attention. Cognition, 10(1–3), 145–150.

    Article  PubMed  Google Scholar 

  • Kissler, J., & Keil, A. (2008). Look-don’t look! How emotional pictures affect pro- and anti-saccades. Experimental Brain Research, 188(2), 215–222.

    Article  PubMed  Google Scholar 

  • Ko, H. K., Poletti, M., & Rucci, M. (2010). Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neuroscience, 13(12), 1549–1553.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual (Technical Report A–6). Gainesville: University of Florida.

    Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual (Technical Report A-8). Gainesville: University of Florida.

    Google Scholar 

  • Lang, P. J., & Davis, M. (2006). Emotion, motivation, and the brain: Reflex foundations in animal and human research. Progress in Brain Research, 156, 3–29.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45, 721–730.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., & Kliegl, R. (2008). Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision, 8(14), 1–17.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5(3), 229–240.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Hubel, D. H. (2009). Microsaccades: A neurophysiological analysis. Trends in Neurosciences, 32(9), 463–475.

    Article  PubMed  Google Scholar 

  • Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1680–1685.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mulckhuyse, M., & Theeuwes, J. (2010). Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychologica, 134(3), 299–309.

    Article  PubMed  Google Scholar 

  • Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2006). Eye movement assessment of selective attentional capture by emotional pictures. Emotion, 6(2), 257–268.

    Article  PubMed  Google Scholar 

  • Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 305–323.

    PubMed  Google Scholar 

  • Öhman, A., Carlsson, K., Lundqvist, D., & Ingvar, M. (2007). On the unconscious subcortical origin of human fear. Physiology & Behavior, 92(1–2), 180–185.

    Article  Google Scholar 

  • Otero-Millan, J., Troncoso, X. G., Macknik, S. L., Serrano-Pedraza, I., & Martinez-Conde, S. (2008). Saccades and microsaccades during visual fixation, exploration and search: Foundations for a common saccadic generator. Journal of Vision, 8(14), 1–18.

    Article  PubMed  Google Scholar 

  • Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59(1–2), 185–198.

    Article  Google Scholar 

  • Pollatos, O., Herbert, B. M., Matthias, E., & Schandry, R. (2007). Heart rate response after emotional picture presentation is modulated by interoceptive awareness. International Journal of Psychophysiology, 63(1), 117–124.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. The Journal of Neuroscience, 4, 1863–1874.

    PubMed  Google Scholar 

  • Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14(6), 619–633.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Engbert, R., & Kliegl, R. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166(3–4), 427–439.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Kliegl, R., & Engbert, R. (2008). Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision, 8(11), 1–23.

    Article  PubMed  Google Scholar 

  • Rösler, A., Ulrich, C., Billino, J., Sterzer, P., Weidauer, S., Bernhardt, T., et al. (2005). Effects of arousing emotional scenes on the distribution of visuospatial attention: Changes with aging and early subcortical vascular dementia. Journal of the Neurological Sciences, 229–230, 109–116.

    Article  PubMed  Google Scholar 

  • Schneps, M., Rose, L. T., Martinez-Conde, S., & Pomplun, M. (2009). Covert orienting reflex: Involuntary pupil response predicts microsaccade production. Journal of Vision, 9(8), 399.

    Article  Google Scholar 

  • Schutter, D. J., & van Honk, J. (2009). The cerebellum in emotion regulation: A repetitive transcranial magnetic stimulation study. Cerebellum, 8, 28–34.

    Article  PubMed  Google Scholar 

  • Turatto, M., Valsecchi, M., Tamè, L., & Betta, E. (2007). Microsaccades distinguish between global and local visual processing. NeuroReport, 18(10), 1015–1018.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., Betta, E., & Turatto, M. (2007a). Visual oddballs induce prolonged microsaccadic inhibition. Experimental Brain Research, 177(2), 196–208.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., & Turatto, M. (2007b). Microsaccadic response to visual events that are invisible to the Superior Colliculus. Behavioral Neuroscience, 121, 786–793.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., Dimigen, O., Kliegl, R., Sommer, W., & Turatto, M. (2009a). Microsaccadic inhibition and P300 enhancement in a visual oddball task. Psychophysiology, 46(3), 635–644.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., & Turatto, M. (2009b). Microsaccadic responses in a bimodal oddball task. Psychological Research, 73(1), 23–33.

    Article  PubMed  Google Scholar 

  • van Reekum, C. M., Johnstone, T., Urry, H. L., Thurow, M. E., Schaefer, H. S., Alexander, A. L., et al. (2007). Gaze fixations predict brain activation during the voluntary regulation of picture-induced negative affect. Neuroimage, 36(3), 1041–1055.

    Article  PubMed  Google Scholar 

  • Yee, R. D., Baloh, R. W., Marder, S. R., Levy, D. L., Sakala, S. M., & Honrubia, V. (1987). Eye movements in schizophrenia. Investigative Ophthalmology & Visual Science, 28(2), 366–374.

    Google Scholar 

  • Yiend, J., & Mathews, A. (2001). Anxiety and attention to threatening pictures. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 54(3), 665–681.

    Article  PubMed  Google Scholar 

  • Zhao, Z., & Davis, M. (2004). Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. The Journal of Neuroscience, 24(46), 10326–10334.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially funded by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (KAKENHI, 22700466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Kashihara.

Appendix

Appendix

IAPS numbers for emotional stimuli. Neutral pictures: 2190, 2480, 2514, 5020, 5030, 5120, 5200, 5520, 5534, 5711, 5720, 5725, 5726, 6150, 7000, 7002, 7003, 7004, 7006, 7009, 7010, 7012, 7017, 7020, 7025, 7026, 7030, 7031, 7034, 7035, 7040, 7050, 7056, 7060, 7080, 7090, 7096, 7100, 7110, 7130, 7140, 7150, 7160, 7170, 7175, 7185, 7187, 7190, 7205, 7207, 7217, 7224, 7233, 7234, 7235, 7490, 7491, 7500, 7550, 7950. Pleasant pictures: 1410, 1440, 1460, 1540, 1590, 1595, 1600, 1601, 1603, 1710, 1750, 1920, 1999, 2000, 2040, 2045, 2050, 2057, 2058, 2070, 2071, 2080, 2150, 2165, 2250, 2311, 2340, 2341, 2347, 5010, 5600, 5830, 7200, 7230, 7280, 7282, 7283, 7325, 7330, 7340, 7350, 7352, 7430, 7405, 7461, 7475, 7476, 7482, 7487, 7488, 8030, 8041, 8080, 8162, 8200, 8350, 8370, 8380, 8467, 8470. Unpleasant pictures: 1090, 1110, 1120, 1220, 1301, 2120, 2691, 2900, 3000, 3010, 3030, 3051, 3060, 3064, 3071, 3080, 3120, 3130, 3170, 3280, 3400, 3500, 3530, 6210, 6212, 6231, 6242, 6243, 6312, 6313, 6314, 6370, 6510, 6540, 6550, 6560, 6571, 6821, 8480, 9040, 9041, 9042, 9250, 9400, 9405, 9410, 9433, 9440, 9490, 9570, 9571, 9600, 9611, 9620, 9621, 9622, 9910, 9911, 9920, 9921.

Factorial one-way ANOVA (three levels: neutral, pleasant, and unpleasant images) followed by multiple comparisons (the Holm method) was performed in the previous rating scores of valence, arousal, and dominance corresponding to the above IAPS numbers (Lang et al., 2008). In the cases of two rating scores on the same IAPS number, those values were averaged. Statistical results are summarized in Table 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashihara, K., Okanoya, K. & Kawai, N. Emotional attention modulates microsaccadic rate and direction. Psychological Research 78, 166–179 (2014). https://doi.org/10.1007/s00426-013-0490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0490-z

Keywords

Navigation