Skip to main content
Log in

Molecular communication network and its applications in crop sciences

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Plant molecular biology and bacterial behaviour research in the future could focus on using genetically engineered bacteria as a sensor, hormonal/disease detector, and target gene expression, as well as establishing a bioluminescence feedback communication system.

Abstract

Over the last two decades, understanding plant signal transduction pathways of plant hormones has become an active research field to understand plant behavior better. To accomplish signal transduction, plants use a variety of hormones for inter- and intra-communication, and biotic or abiotic stressors activate those. Signal transduction pathways refer to the use of various communication methods by effectors to elicit a response at the molecular level. Research methodologies such as inter-kingdom signaling have been introduced to study signal transduction and communication pathways, or what we can term plant molecular communication. However, stochastic qualities are inherent in most technologies used to monitor these biological processes. Molecular communication (MC) is a new research topic that uses the natural features of biological organisms to communicate and aims to manipulate their stochastic nature to achieve the desired results. MC is a multidisciplinary research field inspired by the use of molecules to store, spread, and receive information between biological organisms known as “Biological Nanomachines.” It has been used to demonstrate how biological entities may be characterised, modelled, and engineered as communication devices in the same manner as traditional communication technologies are. We attempted to link MC and PLANT’S MC in this study and we believe that reasonable combined efforts may be made to use the functional applications of MC for detecting and understanding molecular-level activities such as signaling transduction pathways in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Akan OB, Ramezani H, Khan T, Abbasi NA, Kuscu M (2016) Fundamentals of molecular information and communication science. Proc IEEE 105(2):306–318

    Article  Google Scholar 

  • Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52(12):2260–2279

    Article  Google Scholar 

  • Akyildiz IF, Jornet JM, Pierobon M (2011) Nanonetworks: a new frontier in communications. Commun ACM 54(11):84–89

    Article  Google Scholar 

  • Akyildiz IF, Fekri F, Sivakumar R, Forest CR, Hammer BK (2012) Monaco: fundamentals of molecular nano-communication networks. IEEE Wirel Commun 19(5):12–18

    Article  Google Scholar 

  • Balevi E, Akan OB (2013) A physical channel model for nanoscale neuro-spike communications. IEEE Trans Commun 61(3):1178–1187

    Article  Google Scholar 

  • Ballaré CL, Casal JJ (2000) Light signals perceived by crop and weed plants. Field Crops Res 67(2):149–160

    Article  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bell NA, Keyser UF (2016) Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat Nanotechnol 11(7):645

    Article  CAS  PubMed  Google Scholar 

  • Berg HC (1993) Random walks in biology. Princeton University Press

    Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165(2):373–389

    Article  PubMed  Google Scholar 

  • Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34(6):412–420

    Article  CAS  PubMed  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311(5764):1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobo LC, Akyildiz IF (2010) Bacteria-based communication in nanonetworks. Nano Commun Netw 1(4):244–256

    Article  Google Scholar 

  • Cronan JE (2014) Escherichia coli as an experimental organism

  • Cussler EL, Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Denizot A, Arizono M, Nägerl UV, Soula H, Berry H (2019) Simulation of calcium signaling in fine astrocytic processes: effect of spatial properties on spontaneous activity. PLoS Comput Biol 15(8):e1006795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly CJ, Fainzilber M, Twiss JL (2010) Subcellular communication through RNA transport and localized protein synthesis. Traffic 11(12):1498–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto A, Moore MJ, Suda T, Oiwa K (2011) Design of self-organizing microtubule networks for molecular communication. Nano Commun Netw 2(1):16–24

    Article  Google Scholar 

  • Farsad N, Murin Y, Eckford A, Goldsmith A (2016) On the capacity of diffusion-based molecular timing channels. In: 2016 IEEE Int Symp Inf Theory (ISIT). IEEE, pp 1023–1027

  • Gilroy S, Trewavas A (2001) Signal processing and transduction in plant cells: the end of the beginning? Nat Rev Mol Cell Biol 2(4):307–314

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SD, Derr P, DeGrado WF, Goulian M (2009) Engineered single-and multi-cell chemotaxis pathways in E. coli. Mol Syst Biol 5(1):283

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregori M, Akyildiz IF (2010) A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors. IEEE J Select Areas Commun 28(4):612–619

    Article  Google Scholar 

  • Gregori M, Llatser I, Cabellos-Aparicio A, Alarcón E (2010) Physical channel characterization for medium-range nanonetworks using catalytic nanomotors. Nano Commun Netw 1(2):102–107

    Article  Google Scholar 

  • Gregori M, Llatser I, Cabellos-Aparicio A, Alarcón E (2011) Physical channel characterization for medium-range nanonetworks using flagellated bacteria. Comput Netw 55(3):779–791

    Article  Google Scholar 

  • Heren AC, Kuran MŞ, Yilmaz HB, Tugcu T (2013) Channel capacity of calcium signalling based on inter-cellular calcium waves in astrocytes. In: 2013 IEEE international conference on communications workshops (ICC). IEEE, pp 792–797

  • Hiyama S, Moritani Y (2010) Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun Netw 1(1):20–30

    Article  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24(16):1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamali V, Ahmadzadeh A, Wicke W, Noel A, Schober R (2019) Channel modeling for diffusive molecular communication—a tutorial review. Proc IEEE 107(7):1256–1301

    Article  CAS  Google Scholar 

  • Jonsson A, Arbring Sjöström T, Tybrandt K, Berggren M, Simon D (2016) Chemical delivery array with millisecond neurotransmitter release. Sci Adv. https://doi.org/10.1126/sciadv.1601340

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaang BK, Mestre R, Kang D-C, Sánchez S, Kim D-P (2020) Scalable and integrated flow synthesis of triple-responsive nano-motors via microfluidic Pickering emulsification. Appl Mater Today 21:100854

    Article  Google Scholar 

  • Kadloor S, Adve RS, Eckford AW (2012) Molecular communication using brownian motion with drift. IEEE Trans Nanobioscience 11(2):89–99

    Article  PubMed  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication. Ecology 87(4):922–930

    Article  PubMed  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  PubMed  Google Scholar 

  • Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44(5):744–746

    Article  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Mittelbrunn M, Sánchez-Madrid F (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13(5):328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore M, Enomoto A, Nakano T, Egashira R, Suda T, Kayasuga A, Kojima H, Sakakibara H, Oiwa K (2006) A design of a molecular communication system for nanomachines using molecular motors. In: Fourth annual IEEE international conference on pervasive computing and communications workshops (PERCOMW'06). IEEE, pp 6-559

  • Moore M, Enomoto A, Suda T, Nakano T, Okaie Y (2007) Molecular communication: new paradigm for communication among nanoscale biological machines. Handbook Comput Netw, DistribNetw, Netw Plan, Control, Manag, New Trends Appl 3:1034–1054

    Google Scholar 

  • Moore MJ, Suda T, Oiwa K (2009) Molecular communication: modeling noise effects on information rate. IEEE Trans Nanobioscience 8(2):169–180

    Article  PubMed  Google Scholar 

  • Nakano T, Liu J-Q (2010) Design and analysis of molecular relay channels: An information theoretic approach. IEEE Trans Nanobioscience 9(3):213–221

    Article  PubMed  Google Scholar 

  • Nakano T, Suda T, Moore M, Egashira R, Enomoto A, Arima K (2005) Molecular communication for nanomachines using intercellular calcium signaling. In: 5th IEEE conference on nanotechnology. IEEE, pp 478–481

  • Nakano T, Suda T, Koujin T, Haraguchi T, Hiraoka Y (2007) Molecular communication through gap junction channels: system design, experiments and modeling. In: 2007 2nd bio-inspired models of network, information and computing systems. IEEE, pp 139–146

  • Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobioscience 11(2):135–148

    Article  PubMed  Google Scholar 

  • Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University Press

    Book  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91(6):727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolodelli G, Cabral J, Menegatti CR, Marangoni B, Senesi GS (2019) Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: an overview of developments in the last decade (2010–2019). Part I. Soils and fertilizers. TrAC, Trends Anal Chem 115:70–82

    Article  CAS  Google Scholar 

  • Noel A (2015) Modeling and analysis of diffusive molecular communication systems. University of British Columbia, Vancouver

    Google Scholar 

  • Ogundare SA, Van Zyl WE (2019) A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 26:6489–6528

    Article  CAS  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Tsz-fung FC (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Pierobon M (2014) A systems-theoretic model of a biological circuit for molecular communication in nanonetworks. Nano Commun Netw 5(1–2):25–34

    Article  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J (2014) Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204(4):782–790

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Ingram DT, Patel JR, Millner PD, Wang X, Hull AE, Donnenberg MS (2009) A novel approach to investigate the uptake and internalization of Escherichia coli O157: H7 in spinach cultivated in soil and hydroponic medium. J Food Prot 72(7):1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Slonkina E, Kolomeisky AB (2003) Polymer translocation through a long nanopore. J Chem Phys 118(15):7112–7118

    Article  CAS  Google Scholar 

  • Suda T, Nakano T (2018) Molecular communication: a personal perspective. IEEE Trans Nanobioscience 17(4):424–432

    Article  PubMed  Google Scholar 

  • Tsave O, Kavakiotis I, Kantelis K, Mavridopoulos S, Nicopolitidis P, Papadimitriou G, Vlahavas I, Salifoglou A (2019) The anatomy of bacteria-inspired nanonetworks: Molecular nanomachines in message dissemination. Nano Commun Netw 21:100244

    Article  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Uguz I, Proctor CM, Curto VF, Pappa AM, Donahue MJ, Ferro M, Owens RM, Khodagholy D, Inal S, Malliaras GG (2017) A microfluidic ion pump for in vivo drug delivery. Adv Mater 29(27):1701217

    Article  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106(41):17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21(10):3170–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Loake GJ, Chu CS (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front Plant Sci 4:314

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Li W, Chang K, Liu J, Guo Q, Sun H, Jiang M, Zhang H, Chen J, Hu J (2017) Localized surface plasmon resonance-based abscisic acid biosensor using aptamer-functionalized gold nanoparticles. PLoS ONE 12(9):e0185530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wegmann U, Carvalho AL, Stocks M, Carding SR (2017) Use of genetically modified bacteria for drug delivery in humans: revisiting the safety aspect. Sci Rep 7(1):1–7

    Article  CAS  Google Scholar 

  • Wei G, Bogdan P, Marculescu R (2013) Efficient modeling and simulation of bacteria-based nanonetworks with BNSim. IEEE J Select Areas Commun 31(12):868–878

    Article  Google Scholar 

  • Wright KM, Crozier L, Marshall J, Merget B, Holmes A, Holden NJ (2017) Differences in internalization and growth of Escherichia coli O157: H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species N icotiana benthamiana. Microb Biotechnol 10(3):555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Wang Y, Xu D, Liu X, Liu S, Ma X (2021) Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl Mater Today 23:101007

    Article  Google Scholar 

  • Yoneya K, Takabayashi J (2014) Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnol 14:0827

    Google Scholar 

Download references

Acknowledgements

No funds, grants, or other support was received.

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Hu, J., Naqvi, S.M.Z.A. et al. Molecular communication network and its applications in crop sciences. Planta 255, 128 (2022). https://doi.org/10.1007/s00425-022-03903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03903-5

Keywords

Navigation